Flex-Efficiency

A Concept for Integrating Efficiency and Flexibility By Industrial Consumers

Alexandra Langenheld
BERLIN, AUGUST 2016
Energy efficiency – a crucial pillar of Germany’s energy transition

Increasing efficiency
Reduction of electricity consumption relative to 2008: - 10% in 2020; - 25 % in 2050

The more electricity that industries and private households save, the less power grids and power plants (both for conventional and renewable energy) are needed.

Higher efficiency will reduce the costs of the total system by up to 28 billion euros by 2050.

Every kilowatt hour not consumed saves between 11 and 15 euro cents.
There’s considerable potential for more flexibility among energy consumers, especially among large industrial players

When renewables exceed 50 percent of the energy supply, the value of efficiency and flexibility will fluctuate depending on time of day and year. This has an effect on electricity markets and prices.

Increasingly, efficiency and flexibility become factors in company decision-making and the design of new production facilities and equipment.

Using demand-side-management, companies can fully utilise low wholesale prices when wind and PV feed-in levels are high.

Therefore, energy efficiency policies should emphasize the integration of efficiency and flexibility.
Combining efficiency and flexibility can lead to both synergies and antagonisms

We thus asked what the integration of efficiency and flexibility means for companies in practice:

→ What are the **technological and economic options** for optimisation at the company level?

→ What **general conditions and incentives** would be needed for company and investment decisions that are good for the national economy and that offer the power system efficiency and flexibility cost-effectively?
The analysis of flex-efficiency examines multiple levels

→ **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?

→ **Power system**: How are efficiency and flexibility optimized within the overall system?

→ Efficiency and flexibility in **company practice**: two case studies – aluminium electrolysis at Trimet and pump systems.

→ **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?

→ **Measures**: What measures are suited to reduce obstacles?

→ **Implementation**: What can companies do today to exploit synergies?
The analysis of flex-efficiency examines multiple levels

→ **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?

→ **Power system**: How are efficiency and flexibility optimized within the overall system?

→ Efficiency and flexibility in **company practice**: two case studies – aluminium electrolysis at Trimet and pump systems.

→ **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?

→ **Measures**: What measures are suited to reduce obstacles?

→ **Implementation**: What can companies do today to exploit synergies?
A variety of technologies exist to implement efficiency and flexibility at a production facility

Implementing efficiency and flexibility at a production facility

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process dimensioning</td>
<td>Process adaption</td>
</tr>
<tr>
<td>Using newest technologies</td>
<td>Use of storage capacities such as:</td>
</tr>
<tr>
<td>Improving insulation</td>
<td>• Heat storage</td>
</tr>
<tr>
<td>Process coupling and adaption</td>
<td>• Cold storage</td>
</tr>
<tr>
<td>Reducing flow resistance</td>
<td>• Compressed air storage</td>
</tr>
<tr>
<td>Modulating times of use</td>
<td>• Water storage</td>
</tr>
<tr>
<td></td>
<td>• Natural gas storage</td>
</tr>
<tr>
<td></td>
<td>• Material buffers</td>
</tr>
</tbody>
</table>

Berlin, August 2016 | Alexandra Langenheld
Efficiency and flexibility can interact in different ways

Investments in efficiency and/or flexibility can lead to the following synergies and antagonisms:

a. Efficiency and flexibility both rise (synergy)

b. Efficiency increases but flexibility decreases (antagonism)

c. Flexibility increases but efficiency decreases (antagonism)

d. There is no interaction between increased efficiency and increased flexibility
Schematic diagram of interaction types

The two curves represent the possible combinations of efficiency and flexibility at the operational level and within the technological restrictions (dotted lines).

If additional investment decisions are considered, the degree of freedom increases.

The shift of the curve (from red to blue) indicates an increase of both efficiency and flexibility (interaction type a).

There exists nevertheless numerous technological arrangements in which investment decisions increase efficiency or flexibility at the cost of the other.

Ecofys (2016)
The schematic diagram can be used to categorise different technological measures

<table>
<thead>
<tr>
<th>Technology / procedure</th>
<th>Operational vs. Investment</th>
<th>Contributes to efficiency</th>
<th>Contributes to flexibility</th>
<th>Interaction? (Type)</th>
<th>Description of the interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing and improving control and monitoring technologies</td>
<td>Investment</td>
<td>+</td>
<td>+</td>
<td>Synergy (Type A)</td>
<td>Process monitoring allows energy efficiency to be improved and shifts in demand to be better controlled</td>
</tr>
<tr>
<td>Improvement of storage capacity through insulation</td>
<td>Investment</td>
<td>+</td>
<td>+</td>
<td>Synergy (Type A)</td>
<td>Insulation reduces heat loss and increases storage and, with it, flexibility</td>
</tr>
<tr>
<td>Adopting more efficient procedures</td>
<td>Investment</td>
<td>+</td>
<td>+</td>
<td>Synergy (Type A)</td>
<td>Changing to a more flexible process can increase efficiency</td>
</tr>
<tr>
<td>Reducing overdimensioning in turbomachinery</td>
<td>Investment</td>
<td>+</td>
<td>-</td>
<td>Antagonism (Type B)</td>
<td>If overdimensioning is reduced and investments are made in new machines, flexibility declines but efficiency rises</td>
</tr>
<tr>
<td>Adjusting process intensity</td>
<td>Operational</td>
<td>-</td>
<td>+</td>
<td>Antagonism (Type C)</td>
<td>Intensity of process is varied and run at the optimal level</td>
</tr>
<tr>
<td>Operating turbomachinery at partial load at overdimensional production facilities</td>
<td>Operational</td>
<td>-</td>
<td>+</td>
<td>Antagonism (Type C)</td>
<td>As the effectiveness of turbomachinery declines at partial load, so does efficiency</td>
</tr>
<tr>
<td>Improving energy and material buffers in production processes</td>
<td>Investment</td>
<td>-</td>
<td>+</td>
<td>Antagonism (Type C)</td>
<td>Storage increases flexibility, but any storage losses will decrease efficiency</td>
</tr>
<tr>
<td>Heat recovery of waste heat</td>
<td>Investment</td>
<td>+</td>
<td>O</td>
<td>No interaction (Type D)</td>
<td>Heat recovery does not shape flexibility</td>
</tr>
<tr>
<td>Increasing efficiency of turbomachinery</td>
<td>Investment</td>
<td>+</td>
<td>O</td>
<td>No interaction (Type D)</td>
<td>Investments in similarly dimensioned but more efficient machinery increases efficiency but does not influence flexibility</td>
</tr>
<tr>
<td>Increasing efficiency of lighting</td>
<td>Investment</td>
<td>+</td>
<td>O</td>
<td>No interaction (Type D)</td>
<td>Improved light yield does not influence flexibility</td>
</tr>
<tr>
<td>Reducing flow losses in piping systems</td>
<td>Investment</td>
<td>+</td>
<td>O</td>
<td>No interaction (Type D)</td>
<td>Reducing flow loss does not influence flexibility</td>
</tr>
</tbody>
</table>

Ecofys (2016)
The analysis of flex-efficiency examines multiple levels

→ **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?

→ **Power system**: *How are efficiency and flexibility optimized within the overall system?*

→ Efficiency and flexibility in **company practice**: two case studies – aluminium electrolysis at Trimet and pump systems.

→ **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?

→ **Measures**: What measures are suited to reduce obstacles?

→ **Implementation**: What can companies do today to exploit synergies?
The value of efficiency and flexibility depends on residual load

Residual load duration curve/ sorted hourly residual load of one year

Ecofys (2016)
At the system level, flexibility can be used to avoid peaks and strong ramping of residual load.

Gradient of modulated residual load in 2030 and possible effect of flexibility

Ecofys (2016)
Conclusions so far

The challenge lies in:
- harmonizing operational and investment decisions about efficiency and flexibility with changing system requirements.

When efficiency and flexibility are deployed optimally from an economic standpoint:
- they keep the cost of the power system to a minimum in times when generation is volatile.

In doing so it is important:
- to solve tasks of operational allocation and about investment decisions.
The analysis of flex-efficiency examines multiple levels

→ **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?

→ **Power system**: How are efficiency and flexibility optimized within the overall system?

→ *Efficiency and flexibility in company practice: two case studies* – aluminium electrolysis at Trimet and pump systems.

→ **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?

→ **Measures**: What measures are suited to reduce obstacles?

→ **Implementation**: What can companies do today to exploit synergies?
Trimet increases efficiency and flexibility through investment

Illustration of the interaction of efficiency and flexibility through the use of heat conductors in aluminium production in 12 of Trimet’s electrolysis ovens

Ecofys (2016)
In the case of pump systems, antagonisms occur between efficiency and flexibility even when investments are made.

Schematic illustration of the effects of replacing overdimensional pumps with smaller, more efficient pumps.

Ecofys (2016)
Conclusions so far

With the status quo (operational adjustment) the deployment of flexibility in production facilities and processes leads to deviations from the optimal operating point and to operations with lower efficiency:

→ *Either the electricity yield of the electrolysis is reduced when leaving the optimal operating point or the effectiveness of the pump system is reduced (antagonism).*

Investments can lead to both synergies and antagonisms between efficiency and flexibility:

→ *In the case of Trimet, efficiency and flexibility are increased. In the pump system example, efficiency increased while flexibility decreased.*

The challenge lies in harmonising the optimal relation from a power system perspective with the investors’ decisions:

→ *Trimet increased investment in expectation of increased demand for flexibility. Investors in cross-sectional technologies have fewer chances to leverage the system value of greater investment for more flexibility and efficiency on the operational level.*
The analysis of flex-efficiency examines multiple levels

- **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?
- **Power system**: How are efficiency and flexibility optimized within the overall system?
- Efficiency and flexibility in **company practice**: two case studies – aluminium electrolysis at Trimet and pump systems.
- **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?
- **Measures**: What measures are suited to reduce obstacles?
- **Implementation**: What can companies do today to exploit synergies?
Ideally, price signals show the system requirements for flexibility and efficiency

Summary of price incentives for efficiency and flexibility from the wholesale electricity market

<table>
<thead>
<tr>
<th></th>
<th>Efficiency incentives</th>
<th>Flexibility incentives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>Level of spot and intraday prices</td>
<td>Volatility of spot and intraday prices</td>
</tr>
<tr>
<td>(operational)</td>
<td></td>
<td>Prices for flexibility products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected volatility of wholesale prices in the long term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected prices for flexibility products in the long term</td>
</tr>
<tr>
<td>Long-term</td>
<td>Forward prices, and possible in the future:</td>
<td></td>
</tr>
<tr>
<td>(investment)</td>
<td>efficiency markets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ecofys (2016)
Numerous obstacles stand in the way of full effectiveness of price incentives

The effect of the price signal is limited

→ because the price signal from the wholesale market is only indirectly passed on to consumers
→ because deficits exist in the design of flexibility markets
→ because the structure of grid charges creates false incentives
→ because duties, surcharges, and other fees create additional false incentives

Further obstacles exist (market imperfections) that impede economically sensible investments in efficiency such as

→ lack of information and uncertainty about future developments
→ lack of technological and economic adjustments
→ investor/user dilemma (especially for efficiency in residential buildings)
The analysis of flex-efficiency examines multiple levels

- **Production facility**: Does the technical implementation of efficiency and flexibility in a production facility lead to synergies or antagonisms?
- **Power system**: How are efficiency and flexibility optimized within the overall system?
- Efficiency and flexibility in **company practice**: two case studies – aluminium electrolysis at Trimet and pump systems.
- **Obstacles**: What obstacles stand in the way of finding the optimal combination of efficiency and flexibility?
- **Measures**: What measures are suited to reduce obstacles?
- **Implementation**: What can companies do today to exploit synergies?
To eliminate obstacles, we must think about regulatory- and company-level measures

<table>
<thead>
<tr>
<th>Regulatory measures</th>
<th>Company measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Improve price signals</td>
<td>➔ Operational</td>
</tr>
<tr>
<td>➔ Improve design of flexibility markets</td>
<td>• Make interactions transparent</td>
</tr>
<tr>
<td>➔ Review grid charges and other duties and surcharges</td>
<td>• Carry out operational adjustments</td>
</tr>
<tr>
<td>➔ Reduce information gaps and uncertainties</td>
<td>• Integrate flexibility elements in energy management systems</td>
</tr>
<tr>
<td>➔ Amend ISO 50001</td>
<td>➔ Investment</td>
</tr>
<tr>
<td></td>
<td>• Account for interactions when designing production facilities and when making investment decisions</td>
</tr>
</tbody>
</table>

→ More research is needed to quantify interactions, overall system effects, regulatory measures, and practical solutions.
Key Findings

1	**Efficiency and flexibility grow into a joint concept: flex-efficiency.** As the share of renewables in the energy supply increases, efficiency gains a time of use dimension. When the sun doesn’t shine or the wind doesn’t blow, wholesale electricity prices rise – and electrical efficiency becomes more valuable than in times when renewable energy are plentiful.
2	**Flex-efficiency is becoming a paradigm for the design and operation of industrial production facilities.** As the share of wind and solar energy increases, so do fluctuations of wholesale electricity prices. Today, plans for new industrial production facilities must incorporate both energy efficiency and flexibility if they are to benefit from times with low energy prices in the future.
3	**Flexibility markets and their products must be improved.** Market access, market structures, and the appropriate products (such as interruptible loads and demand-side management) are crucial if market price signals are to serve as incentives for the economically and system-optimised operation of production facilities or for attendant investments.
4	**Investments in flex-efficiency need a combination of market incentives and other incentives.** Market prices provide good incentives for the optimisation and operation of large energy-intense production processes. But they often fail in the face of “average” processes, storage systems, and cross-sectional technologies. Supplemental instruments are needed to raise their potential.
Thank you for your attention!

Questions or Comments? Feel free to contact me:
Alexandra.Langenheld@agora-energiewende.de

Agora Energiewende is a joint initiative of the Mercator Foundation and the European Climate Foundation.