Dimensionierung einer Klimaschutzreserve im Stromsektor zur Erreichung des 2020-Ziels

Philipp Litz, Dr. Patrick Graichen

Deutschland hat sich zum Ziel gesetzt, seine Treibhausgasemissionen bis 2020 um 40 Prozent gegenüber 1990 zu reduzieren. Ohne zusätzliche Anstrengungen wird dieses Ziel laut aktuellem Projektionsbericht jedoch um rund 7 Prozentpunkte bzw. 91 Mio. t verfehlt.1 Um die Klimaschutzlücke zu schließen, hat die Bundesregierung im Dezember 2014 das „Aktionsprogramm Klimaschutz 2020“ verabschiedet, das für alle Sektoren zusätzliche Minderungsbeiträge definiert, die über die erwartete Emissionsentwicklung hinausgehen. 22 Mio. t dieser zusätzlichen Einsparungen sollen im Stromsektor eingespart werden.

Der Vorschlag des gezielten Marktaustritts durch Überführung in eine Reserve bzw. die Stilllegung von Kraftwerkskapazitäten unterscheiden sich in ihrer Ausgestaltung und Wirkung signifikant von dem Instrument des Klimabeitrags. Im Folgenden soll daher die Wirkungsweise und die notwendige Dimensionierung derartiger Marktaustritte untersucht werden.

1 Diskutierte Umsetzungsvorschläge

Die verschiedenen Umsetzungsvorschläge setzen auf bestimmten Annahmen über die Business-as-usual-Entwicklung im Stromsektor bis 2020 auf:

Kraftwerkspark insbesondere aufgrund der wachsenden Anteile der Erneuerbaren Energien und leicht steigender CO₂-Preise (17 Mio. t CO₂-Reduktion).

Aufbauend auf diesen Referenzentwicklungen liegen verschiedene Berechnungen vor, wie weitergehende Emissionsreduktionen im Stromsektor erzielt werden können:

- Der vom Bundeswirtschaftsministerium vorgeschlagene Klimabeitrag wurde u.a. von der IG Bergbau, Chemie, Energie (IG BCE) kritisiert. Befürchtet wurden Strukturbrüche durch die wirtschaftlichkeitsbedingte Schließung von Braunkohlekraftwerken und als Folge daraus auch von Braunkohletagebauen. Daraufhin wurde Anfang Juni ein Alternativvorschlag der IG BCE zusammen mit dem BDI in die Diskussion eingebracht. Demnach sollen die zusätzlichen CO₂-Minderungen zur Hälfte auf Basis einer Kraftwerkreserve für Versorgungssicherheit und Klimaschutz (11 Mio. t CO₂-

3 vgl. BMUB (2015)
4 Eigene Berechnung auf Basis BDEW (2015)
5 vgl. Enervis (2015)
Minderung) sowie einer noch deutlich stärkeren Förderung der KWK (11 Mio. t CO₂-
Minderung) sichergestellt werden. Hinsichtlich der Kraftwerksreserve ist vorgesehen,
dass Kohlekraftwerke für einen Zeitraum von vier Jahren in diese Reserve überführt und
anschließend endgültig stillgelegt werden. In den Jahren 2017 bis 2019 soll die Reserve
um jeweils 2 Gigawatt (GW) Leistung erhöht und somit auf 6 GW im Jahr 2019 und 2020
ausgebaut werden.

- Darüber hinaus werden **aktuell weitere Vorschläge** über die Ausgestaltung der
 notwendigen Klimaschutzmaßnahme diskutiert. Eine der vorgeschlagenen Optionen
 sieht dabei die Einführung einer Kraftwerksreserve ausschließlich für
 Braunkohlekraftwerke und im Umfang von 3,5 GW vor.

*Tabelle 1 gibt einen Überblick über die erwarteten business-as-usual Entwicklungen sowie die
aktuell diskutierten Varianten einer zusätzlichen Klimaschutzmaßnahme.*
<table>
<thead>
<tr>
<th>Vorschlag/Szenario (Institution)</th>
<th>CO₂-Reduktion bis 2020 ohne weitere Maßnahmen</th>
<th>Zusätzliche CO₂-Reduktion bis 2020</th>
<th>Gesamte CO₂-Reduktion bis 2020</th>
<th>CO₂-Reduktion gegenüber 1990</th>
<th>Ausgestaltung der zusätzlichen Klimaschutzmaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enervis³</td>
<td>39 Mio. t</td>
<td>50 Mio. t</td>
<td>89 Mio. t</td>
<td>40 Prozent</td>
<td>Zusätzliche Stilllegungen von Kohlekraftwerken im Umfang von 13,7 GW</td>
</tr>
<tr>
<td>Projektsbericht (BReg)</td>
<td>45 Mio. t</td>
<td>-</td>
<td>45 Mio.</td>
<td>31 Prozent</td>
<td>-</td>
</tr>
<tr>
<td>Klimabeitrag (BMWi)</td>
<td>45 Mio. t</td>
<td>22 Mio. t</td>
<td>67 Mio.</td>
<td>36 Prozent</td>
<td>Altersabhängige Emissionsfreigrenze (3 Mio. t / GW), Klimabeitrag von 18-20 €/t ab Überschreitung der Freigrenze.</td>
</tr>
<tr>
<td>Modifizierter Klimabeitrag (BMWi) sowie erhöhte KWK-Förderung</td>
<td>45 Mio. t</td>
<td>16 Mio. t durch Klimaschutzmaßnahme, 4 Mio. t durch KWK, 2 Mio. t im Verkehrssektor</td>
<td>65 Mio. t</td>
<td>36 Prozent</td>
<td>Altersabhängige Emissionsfreigrenze (3,8 Mio. t / GW), Klimabeitrag wird indexiert an Strom- und CO₂-Preisentwicklung.</td>
</tr>
<tr>
<td>3,5 Gigawatt-Braunkohlereserve</td>
<td>Keine Angabe (vermutlich zwischen 39 - 45 Mio. t)</td>
<td>6 Mio. t durch Braunkohlereserve (eigene Berechnung), 16 Mio. t durch übrige Maßnahmen</td>
<td>Keine Angabe (vermutlich zwischen 61 - 67 Mio. t)</td>
<td>33 Prozent</td>
<td>Kraftwerksreserve im Umfang von 3,5 GW Braunkohlekraftwerke</td>
</tr>
</tbody>
</table>

Eigene Darstellung
2 Wirkung einer Kohle Kraftwerksreserve auf die CO₂-Emissionen

Im Gegensatz zum ursprünglichen BMWi-Vorschlag des Klimabeitrages sehen sowohl der aktuelle Gegenvorschlag von IGBCE/BDI als auch die von enervis für Agora Energiewende durchgeführte Studie den Vermeidungsbeitrag des Stromsektors insbesondere durch die Marktaustritte/Stilllegungen von Kraftwerkskapazitäten vor. Für die CO₂-Vermeidung spielt es dabei keine Rolle, ob die Kraftwerke übergangsweise neben den Markt in eine Reserve überführt oder gleich dauerhaft stillgelegt werden.

Anhand weiterer aktueller, statischer Berechnungen durch enervis wurde zudem abgeleitet, wie viel Kraftwerksleistung in eine Reserve überführt werden müsste, um einen bestimmten Vermeidungsbeitrag (z.B. 11, 16 oder 22 Mio. t entsprechend der aktuell diskutierten Vorschläge) zu erreichen. Flankierend wurde ermittelt, zu welcher CO₂-Vermeidung eine Reserve im Umfang von 3,5 GW führen würde.

\(^8\) So schlägt die IGBCE etwa vor, bei Einführung einer solchen Kraftwerksreserve alle Kraftwerke auszuschließen, die bei der Bundesnetzagentur ihre geplante Stilllegung bereits angezeigt haben. Auch hier muss jedoch angemerkt, dass diese Liste nur einen geringen Teil der in den Business-as-usual Szenarien erwarteten Marktaustritte abdeckt.
3 Ergebnis

Die aktuell diskutierten Vorschläge wurden von enervis über statische Berechnungen entlang der Fragestellung bewertet, wie groß die jeweilige Klimaschutzmaßnahme dimensioniert sein muss, um das jeweils angestrebte Emissionsminderungsziels zu erreichen (s. Abb. 1).³⁹

→ Im Business-as-usual-Szenario (BAU-Szenario) von enervis wird bis 2020 die Stilllegung von Kohlekraftwerken im Umfang von 7,4 GW (2,3 GW Braunkohle / 5,1 GW Steinkohle) erwartet. Im Rahmen des BAU-Szenarios ist dabei von einer Gesamt-CO₂-Minderung um 39 Mio. t auszugehen.¹⁰

→ Gegenüber dem enervis-BAU-Szenario, in dem bereits rund 2,3 GW Braunkohlekapazitäten stillgelegt werden, führt die Einführung einer Braunkohlereserve im Umfang von 3,5 GW zu einer Nettostilllegung von rund 1,2 GW. Diese hätte eine zusätzliche CO₂-Vermeidung von rund 6 Mio. t zur Folge.

→ Sollen, wie von IG BCE/BDI vorgeschlagen, 11 Mio. t CO₂-Minderung durch eine Kraftwerksreserve erfolgen, wären hierfür zusätzliche Marktaustritte im Umfang von 2,7 GW notwendig (2 GW Braunkohle / 0,7 GW Steinkohle). Unter Berücksichtigung der enervis-BAU-Entwicklung entspräche dies einer Gesamtdimensionierung einer Reserve in Höhe von 10 GW (4,3 GW Braunkohle / 5,8 GW Steinkohle).

→ Zur Vermeidung von 16 Mio. t CO₂ zusätzlich zum Business-as-usual-Fall wären Marktaustritte im Umfang von 4,3 GW notwendig (2,6 GW Braunkohle / 1,7 GW Steinkohle), d.h. unter Berücksichtigung der enervis-BAU-Entwicklung (4,9 GW Braunkohle / 6,8 GW Steinkohle) eine Gesamt-Reserve in Höhe von 11,7 GW Kohlekraftwerkskapazität.

→ Zur Erreichung einer zusätzlichen Minderung von 22 Mio. t CO₂ wie vom Bundeswirtschaftsministerium in seinem ursprünglichen Klimabeitrag angestrebt und von der Bundesregierung im Rahmen des Aktionsprogramm Klimaschutz 2020 beschlossen, wären Marktaustritte von 6,2 GW zusätzlich zur BAU-Entwicklung notwendig (3,2 GW Braunkohle / 3 GW Steinkohle). Inklusive der BAU-Entwicklung entspräche dies einer Reserve in Höhe von 13,6 GW (5,5 GW Braunkohle / 8,1 GW Steinkohle).

→ Sollte im Stromsektor eine sektorale Zielerreichung von minus 40 Prozent erreicht werden, wäre hierfür der zusätzliche Marktaustritt von rund 13,7 GW (7,0 GW Braunkohle / 6,7 GW Steinkohle) notwendig.

¹⁰ Rund 22 Mio. t sind dabei direkt auf den Marktaustritt von Kraftwerken zurückzuführen. Die übrigen Emissionsminderungen gehen im Wesentlichen auf weitere Faktoren wie CO₂-Preisentwicklung oder den Ausbau der Erneuerbaren Energien zurück.
4 Fazit

Eine Reserve aus alten Kohlekraftwerken zu bilden, ist grundsätzlich eine mögliche Alternative zum Konzept des Klimaschutzbeitrags, um zusätzliche CO₂-Minderungen im Kraftwerkssektor zu erhalten. Dabei ist jedoch zu berücksichtigen, dass diese immer auch Kraftwerke enthalten werden, die ohnehin stillgelegt worden wären.

Da hinsichtlich der Teilnahme an einer Kraftwerksreserve jedoch nicht zwischen Kraftwerken differenziert werden kann, die ohnehin stillgelegt worden wären und Anlagen, die aufgrund der Versorgungssicherheitsreserve ihre Stilllegung beantragen, muss der Umfang der Reserve diesen Umstand berücksichtigen und entsprechend größer ausgelegt werden.