



## Next steps for energy systems integration

| 10:00am | Welcome and introduction<br>Agora Energiewende and International Energy Agency (IEA)                                                                 |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Part 1  |                                                                                                                                                      |  |  |  |  |  |
| 10:05am | Global perspectives for energy systems integration                                                                                                   |  |  |  |  |  |
|         | Enrique Gutierrez Tavarez, Energy Analyst Electricity, IEA                                                                                           |  |  |  |  |  |
| 10:20am | Case study:<br>Transport sector transformation: integrating electric vehicles into Turkey's<br>distribution grids                                    |  |  |  |  |  |
|         | Deger Saygin, Director, SHURA – Turkey                                                                                                               |  |  |  |  |  |
| 10:35am | Case study:<br>Distribution grid planning for a successful energy transition – focus on<br>electromobility                                           |  |  |  |  |  |
|         | Urs Maier, Senior Associate Energy and Infrastructure, Agora Verkehrswende                                                                           |  |  |  |  |  |
| 10:50am | Case study:<br>Fleet charging patterns and impacts on distribution grids<br>Nicole Thompson, Optimise Prime Consortium Lead and Innovation Director, |  |  |  |  |  |
|         | Hitachi Vantara                                                                                                                                      |  |  |  |  |  |
| 11:05am | Discussion with questions from audience                                                                                                              |  |  |  |  |  |

| 10:00am | Welcome and introduction<br>Agora Energiewende and International Energy Agency (IEA)                                                                 |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Part 1  |                                                                                                                                                      |  |  |  |  |  |
| 10:05am | Global perspectives for energy systems integration                                                                                                   |  |  |  |  |  |
|         | Enrique Gutierrez Tavarez, Energy Analyst Electricity, IEA                                                                                           |  |  |  |  |  |
| 10:20am | Case study:<br>Transport sector transformation: integrating electric vehicles into Turkey's<br>distribution grids                                    |  |  |  |  |  |
|         | Deger Saygin, Director, SHURA – Turkey                                                                                                               |  |  |  |  |  |
| 10:35am | Case study:<br>Distribution grid planning for a successful energy transition – focus on<br>electromobility                                           |  |  |  |  |  |
|         | Urs Maier, Senior Associate Energy and Infrastructure, Agora Verkehrswende                                                                           |  |  |  |  |  |
| 10:50am | Case study:<br>Fleet charging patterns and impacts on distribution grids<br>Nicole Thompson, Optimise Prime Consortium Lead and Innovation Director, |  |  |  |  |  |
|         | Hitachi Vantara                                                                                                                                      |  |  |  |  |  |
| 11:05am | Discussion with questions from audience                                                                                                              |  |  |  |  |  |



# Next steps for energy systems integration

Power System Flexibility Campaign

Enrique Gutierrez

2<sup>nd</sup> April 2019

#### Activities on electricity and energy systems integration















IEA 2020. All rights reserved.

#### The PSF Network



### No single or simple solutions to reach sustainable energy goals

Energy-related CO<sub>2</sub> emissions and reductions in the Sustainable Development Scenario by source



and further technology innovation will be essential to aid the pursuit of a 1.5°C stabilisation

#### Space cooling is a key driver for future electricity demand

World energy use by space cooling by sector in baseline scenario



On current trends, energy needs for space cooling – almost entirely in the form of electricity – will more than triple between 2016 and 2050, driven mainly by residential cooling

#### Space cooling as a window of opportunity

Case study from the Future of Cooling showed the benefit of district cooling with thermal storage to cost effectively meet this demand



Renewables can meet almost two-thirds of the global increase in capacity needs for space cooling to 2050. This will require matching VRE profiles with space cooling loads.

#### EVs potential = managed increase in electricity demand

Future global EV sales and stock per scenario up to 2030 EV30@30 Scenario **New Policies Scenario** 300 300 250 250 EV stock (million vehicles) 200 200 150 150 100 100 50 50 2018 2020 2025 2030 2018 2020 2025 2030 PLDVs - BEV PLDVs - PHEV LCVs - BEV LCVs - PHEV Buses - PHEV Trucks - BEV Trucks - PHEV Buses - BFV

Electricity demand from EVs is expected to reach 640TWhs in 2030 in NPS scenario. 1100 TWh in the EV30@30. Slow chargers which can provide power system flexibility will account for 60% of this.

#### EV demand shaping can contribute to reduce peaks and integrate VRE

Case study from China Power System transformation report: Modelling SDS for China in 2035

![](_page_10_Figure_2.jpeg)

Impact of smart charging to peak load: -165GW (14% of the original load)

Electric mobility has great potential for integrating renewable energy, but only if charging patterns are optimised. This calls for much closer inter-sectoral policy coordination

### EV deployment highlights the local value of flexibility

![](_page_11_Figure_1.jpeg)

Deploying flexibility from distributed resources can result in significant long-term savings if accounted in long-term resource planning

#### Improved understanding of mobility needs is key

| Category              | Charging type                   | Charging<br>time | Utilisation                             | ? |                    | Charging location                    |
|-----------------------|---------------------------------|------------------|-----------------------------------------|---|--------------------|--------------------------------------|
| Small private cars    | Home, Destination,<br>Workplace | Any              | Regular but low consumption             |   | Home charging      |                                      |
| Higher<br>performance | Destination,<br>fast-charging   | Any              | Regular with emphasis<br>on high demand |   | Street charging    |                                      |
| private cars          |                                 |                  |                                         |   | Workplace charging |                                      |
| Mobility<br>fleets    | Hubs, Depot, Home               | Any              | Frequent and very high                  |   | Hubs               |                                      |
| Service fleets        | Hubs, Depot, Home               | Night-<br>time   | Frequent and medium                     |   | Return to base     |                                      |
| Public<br>transport   | Depot                           | Night-<br>time   | Frequent and very high                  |   |                    | Highway / long-<br>distance charging |

Source: Adapted from Arup presentation at PSF 2020 workshop

Different mobility services come about with different charging patterns and infrastructure requirements

#### The choice of charging strategy matters

|                                                      | Technical requirements                                     | Policy requirements                                       |
|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| 1 Unmanaged charging                                 | Investments in<br>generation and<br>network capacity       |                                                           |
| 2 Smart charging (V1G)                               | IT systems to monitor<br>and manage speed of<br>charging   | Introduction of Time-<br>of-use tariffs                   |
| 3 Aggregated smart charging                          | Interoperability of<br>platforms and charging<br>protocols | Aggregation and access to multiple markets                |
| 4 Large-scale bidirectional (V2G) and smart charging | Wide-spread availability<br>of V2G-enabled<br>charging     | Reviewing taxes and<br>levies to avoid double<br>taxation |

The long-term impact (or contribution) of electrifying mobility will depend on policy choices today

#### EV, as other DERs, can contribute to various flexibility services

#### Illustrative sources of system value for flexibility resources

![](_page_14_Figure_2.jpeg)

EVs can help balance the system but that's not their sole purpose. Opening market access can help uncover use-cases for cost-effective deployment

- There are different pathways for transport electrification, all with specific impact and opportunities for power systems in transition
- Local distribution systems are likely to face the greatest burden of EV integration. This will require smarter regulation as well as taking steps to upscale lessons learnt from pilots.
- A coordinated approach for charging infrastructure deployment and network development is **key**, both through sufficient coverage of publicly accessible charging and identifying the match with mobility service demand
- Synergies between EV deployment and VRE integration need to be assessed reasonably, accounting for the priority of mobility needs over power system needs
- The multiple benefits of greater integration between transport and electricity will **require closer cooperation across authorities, planners, industry, OEMs and utilities**.

![](_page_16_Picture_0.jpeg)