

Renewable Energy Scenarios for Pakistan

Presented By Hassan Jafar Zaidi, PPI, Pakistan

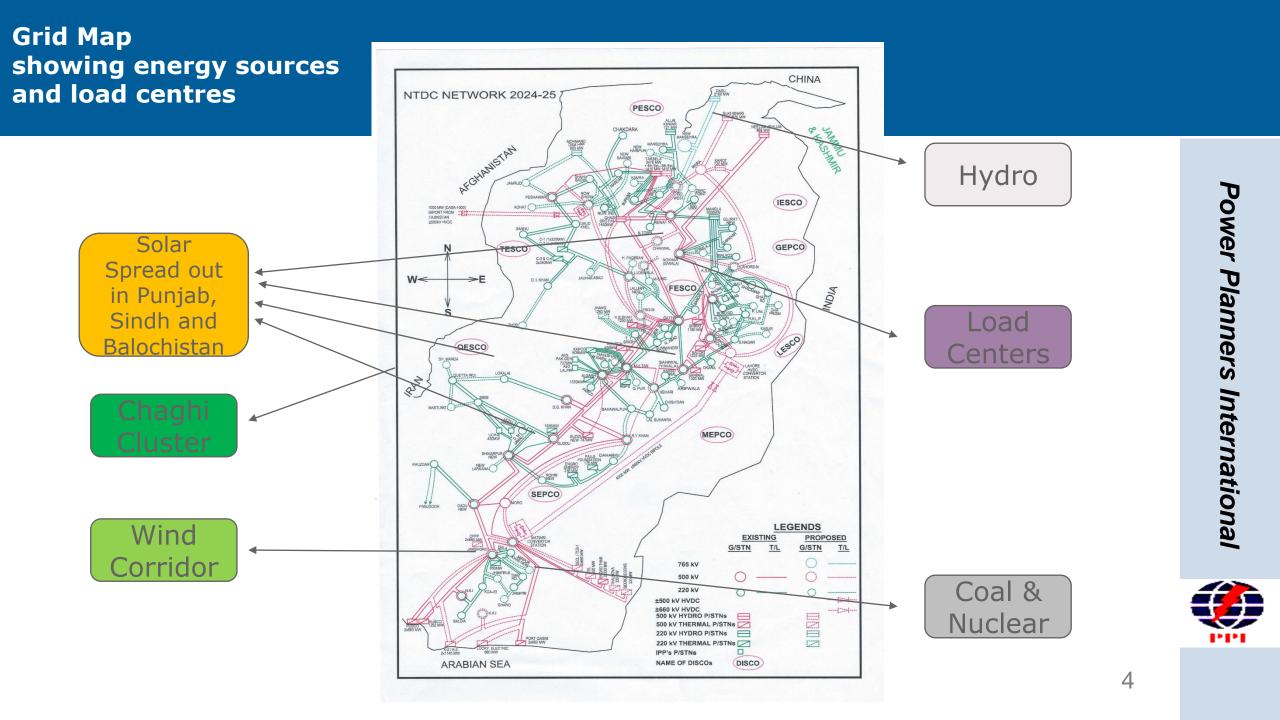
Agora Energiewende's Webinar, 1st of March 2023

Study on behalf of

Grid analysis what is the impact of additional VRE on the grid?

Methodology

Grid System data 2028 model provided by NTDC (Latest Available)


Scenario Studied Summer and Winter Scenarios (Day and Evening)

Peak load scenario studied with max dispatch of RE to see full impact

Power Flow Analysis performed to see the impact of RE plants integration on the system

- System checked under both Normal (N-Conditions) and Contingency (N 1 Condition)
- Power Flows on the Transmission Lines monitored
- Voltages on the Bus Bars monitored

RE Potential

- All the existing RE plants (as of 2022) considered
- All the Committed RE (having Generation License) plants
- Planned Power Plants as per IGCEP (modelled in NTDC data)
- Additional 3.5 GW RE plants compared to already planned till 2028 have been considered

Category	Solar (GW)	Wind (GW)
Existing	0.62	1.24
Committed	0.29	1.25
Planned	5.65	3.55
Additional 2.95		0.50
Total	9.51	6.54
Grand Total		16.0 GW

Operational constraints taken into account for system dispatch

Approach used for dispatching various power plants with the increasing amount of RE

Day Time, taken at full AC capacity Gas Turbines switched Off during day time For Combined Cycle power plants, operation at meet the demand minimum dispatch with ST on-bar and GT • Coal Plants power increased reduced (Minimum GT on-bar) per • as requirement requirement

- Coal fired Power Plants, Turbines kept on-bar with output reduced to 50%
- Remaining dispatch adjusted with Hydro power dispatch reduction during day time
 - Storage Dam reduction by 40 %
 - \blacktriangleright Run of river reduction by 25 %

Evening Time, Solar Power reduced to zero

- Hydro dispatched increased to maximum to
- Gas turbines switched on as per the

Few additional interconnections to connect additional large VRE parks

Location	Size (MW)	Proposed Interconnection
CHISTIAN SOLAR PARK	300	 Interconnection with 220/132 kV Chishtian Grid Station 45 km long 132 kV Transmission Line
QA SOLAR PARK	200	 Interconnection with 220/132 kV Lal Suhanra Grid Station
DERA ISMAIL KHAN	400	 220 kV Transmission Line from Solar Park to DI Khan 220 kV (15-20 km)
JAUHARABAD	500	 220 kV Transmission Line from Solar Park to JAUHARABAD 220 kV (25-30 km)
RAHIM YAR KHAN	400	 220 kV Transmission Line from Solar Park to RAHIM YAR KHAN (40-45 km)
DADU	400	 220 kV Transmission Line from Solar Park to DADU 220 kV (40-45 km)
DERA GHAZI KHAN	500	 220 kV Transmission Line from Solar Park to DG Khan 220 kV (15-20 km)
CHAGHI	500+250	 220 kV line from Chaghi to Mastung with a mid-way switching station would be required. Line length would 450-500 km

Load Flow Analysis: Only few grid reinforcements required for integrating additional VRE

- Transmission System Expansion Plan (TSEP) prepared by NTDC and DISCOs accommodated most of the RE generation
- No issues observed under N conditions
- A few reinforcements will be required for integrating the additional RE in the system to meet N-1 criteria

Proposed reinforcements to strengthen the grid system beyond the off-take point

- Reinforcement at Jhimpir Corridor is required even without additional proposed RE Plants
- Remaining reinforcement are required for additional proposed RE Plants
- Reinforcement needs are low because of the use of re-dispatching measures

Location	Size (MW)	Proposed Interconnection
CHISTIAN SOLAR PARK	300	• Hasilpur – Chistian 132 kV line opening
QA SOLAR PARK	7110	 Lal Suhanra – Karorpakka double circuit (25 km) re-conductor Bypass Lal Suhanra at Crest Energy – Bahwalpur cantt line
Jhimpir Wind Corridor	2900	 Proposed 500 kV Jhimpir Grid Station should be Looped In/Out at the 500 kV Double Circuit rather than one. Dispatch should be managed via operational measure for coal and wind, curtailment of wind can be considered in this regard.
DERA ISMAIL KHAN	400	• DI Khan – DI Khan – II 132 kV line re-conductor (8 km)

Э

With more VRE, direction of power flow is significantly high from south to middle of the country (load centre)

- With increased wind power interconnection in the South power flow from South to mid country becomes more critical
- Combined power from Coal Plants, Nuclear Plants and Wind Power may cause congestion on the 500 kV lines
- Dispatch becomes more critical and during high wind scenario either coal plants power should be reduced or curtailment of wind power would be required.

Additional investigations will be required to look at voltage control and system stability

- With Renewable Generation replacing the conventional generation
 - Voltage Control and reactive power capability may become an issue and additional may be required
 - Grid Stability may also be affected as the system inertia level decreases along with the voltage control
 - Extensive System Stability Studies would be required to test system performance under different events of disturbances

Integrating further VRE to reach 33 GW by 2031 will require a new HVDC line and the reinforcement of existing corridors

- A big chunk of hybrid RE at Chaghi wind corridor of nearly 6 GW
- ± 800 kV HVDC Bipole from Chaghi to Mid-Country (near Muzaffargarh or Multan)
- Reinforcement of 500 kV and 220 kV network in the Mid-Country for onward transmission of power received from Chaghi
- Dispatch of conventional generation to be readjusted to accommodate additional RES to be integrated by 2031

Recommendations

Grid Recommendations I

- All the Stakeholders need to work out a policy for the integration of large amount of RE in the system
- System operator need to have more local / regional control centres and have accurate forecasting for inter-day and intra-day RE outputs
- NTDC needs to prepare a proper set of guidelines for all the developers regarding all the necessary studies and proper data regarding their detailed designs
- SVCs or preferably STATCOM should be recommended to be installed along with RE plants which should provide the reactive power support irrespective of the active power of RE plants

Grid Recommendations II

- Reactive compensation should also contain proper filter devices to contain the harmonic contents
- Operating Reserve to be evaluated statistically and validated through dynamic simulations
- **Operational Studies** would required to be carried out more often to see the transfer and flow of power with the changing output of RE
- Transfer limits between different areas needs to be worked out prior to every season and NPCC to ensure the power transfer be in limits to have more reliable system operation

Conclusions

Grid Studies Conclusions

- With the implementation of TSEP, most of the RE plants can be integrated with only a few reinforcements in the system
- Balanced dispatch policy considering ramp up/down capability of conventional plants would be required to manage the dispatch within day and evening time
- Reduced dispatch of On-Bar Conventional Plants would also provide enough reserve margin for catering the variability of RE plants
- With the re-dispatching of plants and keeping the generation on-bar, system inertia helps keeping the RoCoF within limits

Thank You for Your Attention

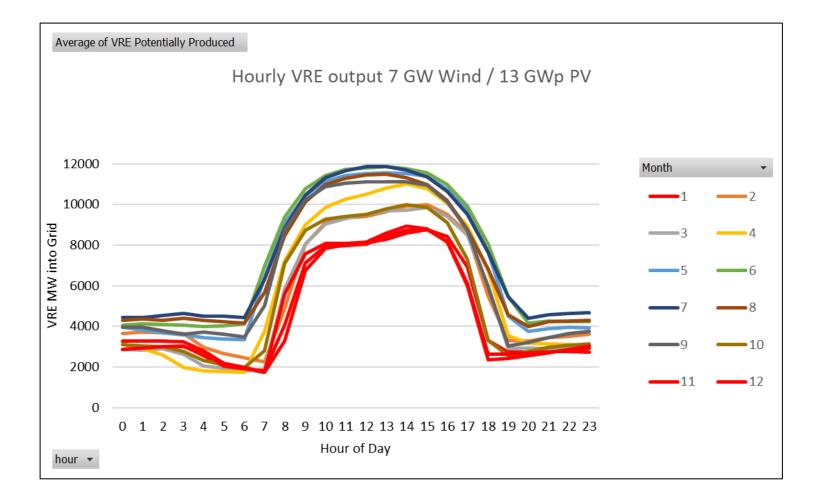
Power Planners International (Pvt.) Ltd.

Pakistan Office: 95-H/2, Wapda Town, Lahore

Phone: +92-42-35224247

Fax: +92-42-351831132

E-mail: <u>hassan@powerplannersint.com</u>, <u>umair@powerplannersint.com</u>


Website: www.powerplannersint.com

Sizing 2031 IGCEP analysis down to 2028 grid model

	PV GWp	Wind GW
Conclusion of 2031 IGCEP analysis	24	12
Balochistan GW Park, commissioning 2028 – 2031	-4	-5
Other utility scale developments in 2029-2031	-3	
Distributed PV and NM 2023-2031	-4	
Total utility scale capacity for grid integration 2028 model	13	7

Simulation of power into grid considering spread locations

Source: Data from VRE locational analysis, 2020

Existing RE Plants

SOLAR PLANTS		
PLANT	Size (MW)	
QAD-SOL-I	100	
APPOLO-SOLAR	100	
BEST-GREEN	100	
CREST-ENERGY	100	
ZENFA	100	
HARAPA SOLAR	15	
OURSUN (KE)	50	
GHARO SOLAR (KE)	50	
Total	615 (MW)	

WIND PLANTS		
PLANT	Size (MW)	
TGF	50	
SACHAL	50	
UEPL	99	
TAPAL	30	
FFC	50	
ZORLUE	56	
SAPPHIRE	50	
METRO	50	
GA-1	50	
YUNUS	50	
TGF-2	50	
TGF-3	50	
JHMPR WP	50	
HAWA	50	
TRICON-A	50	
TRICON-B	50	
TRICON-C	50	
MASTER	50	
HARTFORD	50	
FWELL-1	50	
FWELL-2	50	
DAWOOD	50	
TENAGA	50	
ZEPHYR	50	
Total	1235 (MW)	

Category-III (Committed) RE Plants

SOLAR PLANTS		
PLANT	Size (MW)	
ZORLU	100	
Helios	50	
Meridian	50	
HNDS	50	
ACCESS-SOLAR	10	
ELEC. ACCESS	10	
BUKSH ENERGY	10.5	
SAFE SOLARPP	10.5	
Total	291 (MW)	

WIND PLANTS		
PLANT	Size (MW)	
TRICOM	50	
Gul Ahmed	50	
Artistic	50	
ACT-2	50	
Transatlantic	50	
DIN	50	
Zulekha	50	
Western	50	
Shaheen	50	
Indus	50	
Noor	50	
Nasda	50	
Lake side	50	
Metro-2	60	
Master Green	50	
Category-III Others	489	
Total	1235 (MW)	

Planned RE Plants (IGCEP)

SOLAR PLANTS		
Location	Size (MW)	
HAVELI BAHADUR SHAH	1200	
JHANG	600	
MUZAFFAR GARH	600	
ROJHAN	100	
TAUNSA	50	
SIACHEN	100	
PEZU	100	
KULACHI	100	
DINA	100	
AHMADAL	50	
FATEH JANG	100	
KHARIAN	50	
DINGA	30	
HABIBABAD	30	
CHUNIAN	30	
NOORSAR	30	
DARYAKHAN	100	
MANJHAND	50	
MEHRABPUR	100	
JACOBABAD	100	
SUKKUR	100	
SANGHAR	100	
MACH	30	
MUSLIM BAGH	50	
DARZANDA	50	
KHUZDAR	100	
QA SOLAR PARK	300	
PANJGUR	50	
NARA	50	
QUETTA	50	
BOSTAN	50	
KUCHLAK	200	
SOLAR (KE)	900	
Total	5650 (MW)	

WIND PLANTS

Location	Size (MW)
МАСН	50
MUSLIM BAGH	100
DARZANDA	100
KHUZDAR	200
JHIMPIR	2903
WIND (KE)	200
Total	3553 (MW)

Additional RE Plants

SOLAR PLANTS		
Location	Size (MW)	
CHISTIAN SOLAR PARK	300	
QA SOLAR PARK	200	
DERA ISMAIL KHAN	400	
JAUHARABAD	500	
RAHIM YAR KHAN	400	
DADU	400	
DERA GHAZI KHAN	500	
CHAGHI	250	
Total	2950 (MW)	

WIND PLANTS	
Location	Size (MW)
CHAGHI	500
Total	500 (MW)