WEBINAR

2050 Climate Neutrality Roadmap for Korea 'K-Map' Scenario

: Emissions Reduction Pathways, Drivers, Costs And Benefits

Feb 17, 2022

Green Energy Strategy Institute (KR) Institute for Green Transformation (KR) NEXT Group (KR) Agora Energiewende (DE)

Reduction target is not enough to meet Paris Agreement goals.

1

2

Specific reduction measures on timeline

- **Population** : 52 million (2022)
- **Size :** 10 million ha. (one third of Germany)
- **GDP**: 1.6 trillion USD (2020) world's 12th
- **GDP per capita** : \$29,958 (2020) world's 31th
- GHG emissions : 701 billion tCO2 (2019) world's 9th

Constraints in net-zero transition

- Isolated grid
- Limited carbon storage space
- Manufacturing-oriented economy
- Strong resistance from industry
- Weak consensus on carbon neutrality

Based on macro economic parameters of the government scenario, K-Map derived best reduction potential from each sector.

K-Map Emissions Pathway

40% reduction by 2030, remaining 60% to Net-zero by 2050

• A cumulative 1.6 billion tCO2 saved compared to the government scenario

40% of domestic reduction is possible, particularly led by the power sector by 2030, without CCUS

- Renewable generation 380TWh in 2030, double of the government RE target
- Natural gas-DRI, higher efficiency of f-gas scrubbers, green retrofit, and a rapid EV deployment

Industry sector gathers pace, cutting nearly half of the remaining emissions.

- Low-carbon technologies at full length : H₂-DRI, green naphtha, and alternative supplementary cementitious materials
- Moving from fossil fuel to renewable electricity and hydrogen

2050 in K-Map

Emissions from waste, agriculture, and industry are completely offset by LULUCF.

Compared to the government scenario,

K-Map achieves :

- Carbon neutral transport and building
- Less than half industrial emissions
- No CCS included

- An annual 15-20GW RE addition, to a point where RE takes up 84% in 2050 (onshore WT 10%, offshore WT 37%, solar 38%)
- Installed batteries and hydrogen storage reaching nearly 200GW in 2050

[RE share in generation mix and installed capacity of RE by source]

GES Green Energy Strategy Institute NEXT group

g Institute for Green Transformation Agora

[Installed capacity of storage]

Industry sector driving national hydrogen demand to 18 million tons

[Demand and supply of hydrogen]

- Demand: Feedstocks for steel and petrochemical production, fuel for hightemperature heat, FCEV, and hydrogen turbines
- Supply : 37% produced domestically from offshore wind, the other 63% of hydrogen

supply imported from abroad

Rapidly accelerating the transition to electric vehicles & new fuel economy scheme

[Road transport by type]

- 10 million EVs by 2030, Ban on ICE in 2040 → 80%
 cut in emissions in transport
- No fossil fuel consumption in road transport, leading to net-zero transition of refining sector

STRATEGY (4) : Building Energy Efficiency & Heating Fuel Change

Energy demand for heating decrease in accordance with the efficiency improvement and fuel change.

Institute for Green Transformation

GES Green Energy Strategy Institute

- Energy demand decreases from green retrofits and ZEB standards for new buildings.
- Heating is electrified due to a ban on new gas boilers from 2025, deployment of 3.6 million heat pumps and expanded district heating.

[Heating energy demand and emissions in the building sector]

Net-zero transition in Korea doesn't come cheap, but it's doable.

• Compared to BAU expenses, 1,326 trillion KRW in total (2022-2050), an annual 45 trillion KRW (2.5% of 2020 real GDP) required more

K-map implementation have an annual 50 to 110 trillion KRW of benefits from GHG reductions.

- Benefit is calculated by multiplying the carbon price by the reductions in emission.
- Carbon cost reference : NGFS Net-zero Carbon Price Projection for South Korea (Below 2°C & Net Zero Scenarios)

Both regulations and support mechanisms working together

- Reinforced regulations : K-ETS, ZEB standards, green procurement
- Support mechanisms : EV subsidies, RE tax breaks, CCfD

* source: Agora Energiewende

- Korea can push its GHG target further, achieving an additional 1.6 billion tCO2 of cumulative reductions by 2050.
- The new government has to set aside an additional budget as much as 2.5% of GDP to implement carbon neutrality.
- Net-zero transition will require a sizeable investment, but has the potential for a greater social benefit.

More specifically,

- RE deployment is the foremost agenda of Korea's decarbonization journey.
- To facilitate energy transition to hydrogen, measures to bring down hydrogen prices are necessary.
- Early EV deployment is key to accelerate other sectors' decarbonization.

