

Agenda

Executive summary

Results for EU

Results for Coal-6

Results on country level

Methodology \& main assumptions

Strategic reserves

EXECUTIVE SUMMARY

(C)enervis

Methodology \& scenarios

SCENARIO DESIGN

Definition of political scenarios
Basis for power market modeling

ASSUMPTIONS

Techno-economical parameters
RES, coal trajectories CO_{2} prices

MODELING

Power plant dispatch \& investment up to 2030 Development of capacity and generation mix

RESULTS

Incremental generation costs* (ICG)
Investment volumes
CO_{2} - and other emissions
40% reduction scenario

[^0] methodology section. ** excl. island markets of Malta, Cyprus.

$\mathbf{C O}_{2}$ price* trajectories

40 \% and 55 \% PM scenario trajectories based on projections in reference sources (EC2016 Ref / TYNDP DE sc.). 55 \% MCE \& 55 \% MCTC trajectories result from heuristically iterations as described in the methodology section.

Key results - EU

Capacities

- Phase out of remaining 38 GW of coal capacities in 55% scenarios

Substitution with 100 GW mix of wind onshore, PV \& minor flexible gas capacity

Total CO_{2} emission deltas

- Significant CO_{2} savings in 55 \% scenarios over the decade
- Incremental effects of higher EU ETS prices are limited by reduced coalcapacity over time

Mio. $\mathrm{t} / \mathrm{CO}_{2}$

Generation

Less carbonintensive EU generation mix in the 55% scenarios

RES shares increase by over 5 percentage points compared to 40 \% PM

Total IGC deltas

IGC in a similar range in the 55% PM and 55 \% MCE scenarios

Much higher CO_{2} price in 55% MCTC drives IGC up. However, related costs do create additional public income

Conclusions

A clear pathway to
„-55 \% in 2030"
A coal exit until
2030 is feasible
A strong ETS price
leads the way
Market-driven coal
exit on the doorstep
Renewable support
likely to remain until
2030

The trajectory to reach the 2030 target is clear: A phase-out of the remaining 38 GW (in 2030) coal capacities in the EU countries in 2030 is met with 100 GW additional wind and PV. Additional costs to the consumer versus the baseline remain limited in the range of $3-7 € / \mathrm{MWh}$ with an average of $5 € / \mathrm{MWh}$.

Modelling indicates that a full coal exit until 2030 is possible with additional market based deployment of gas of around 15 GW and overall investment volumes of 82 bn $€$. Additional reserves would be necessary to cover national peak loads nationally or secure non-standard weather years. This would imply building on average two additional gas-based power plants per year in between 2024 and 2030 in the EU, which seems feasible but given the timeline would need a fast decision on governance and incentive structures.

Three core policy approaches are available to incentivize necessary developments: increased ETScarbon pricing, national policies to govern coal phase-outs and support of renewable expansion. The higher the European ambition in regards to ETS pricing, the fewer national policies are necessary to reach the target. The currently assumed ambition to increase the reduction target and reform the ETS* already significantly reduces the need for additional national incentives, but not completely.

The modelling indicates that sustained prices above $65 € / t$ alongside the necessary RE expansion could lead to a full and market-driven coal phase-out. Any national regulation on coal phase-out should therefore take care not overcompensate plant closures to even slow down this development.

With increasing renewable penetration, the ability to integrate additional renewable volumes decreases. Therefore, to fully phase out support mechanisms for renewables a much higher CO_{2} price, in the range of up to $150 € / t$, would be necessary. This would lead to major distributional challenges (increasing power prices vs. increasing revenues from CO_{2} auctions), which would be difficult to resolve.

RESULTS FOR EU

(e)enervis

Total emissions \& system costs - EU

All coal-exit scenarios result in significant reduction of CO_{2}. Incremental effects of higher CO_{2} prices are diminishing as coal capacity is decreasing. Additional IGC are in a similar range in the 55% PM and 55% MCE scenarios, while higher CO_{2} price in 55% MCTC drives IGC up significantly at EU level as it affects markets without potential for coal substitution.

Capacity \& generation - EU

Compared to the 40 \% PM scenario, the 55 \% scenarios see an accelerated reduction of remaining coal capacities, which are substituted with a mix of wind onshore, PV \& gas units (flexibility demand). The EU generation mix becomes less carbon-intensive in the 55 \% scenarios and RES shares increase by over 5 percentage points by 2030, and more in MCTC due to additional market based expansion.

Scenario differences: Installed capacities at EU level

In all 55 \% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier and steeper capacity reduction of coal units driven by higher CO_{2} price trajectories. Higher CO_{2} prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

55% MCE

- Wind offshore

■ Biomass

- Hydro pumped storage
- Coal
- Nuclear

55 \% MCTC

- Wind offshore
- Biomass
- Hydro pumped storage
- Coal
- Nuclear

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation at EU level

Earlier decommissioning and lower utilization of the remaining coal-fired units trigger temporary increased gas-based generation (midterm), especially in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by PV, wind onshore and some gas-based generation. All scenarios lead to an increase in renewable energy generation of over 150 TWh by 2030.

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions at EU level

All 55% scenarios lead to significant CO_{2} savings compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the $55 \% \mathrm{PM}$ results in CO_{2} reduction of 964 Mio. t by 2030 , the 55% MCE by an additional 282 Mio. t of this reduction. In the 55% MCTC scenario a larger (compared to $55 \% \mathrm{PM}$) reduction 594 Mio . CO_{2}.

Mio. CO_{2}

55 \% MCE

Mio. $\mathrm{t} \mathrm{CO}_{2}$

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes at EU level

Required additional investments into the power-generating infrastructure of the EU accumulate to $83 \mathrm{bn} €(55 \% \mathrm{PM}$), $96 \mathrm{bn} €(55 \%$ Market based coal exit) and 131 bn $€(55 \%$ Market based coal-to-clean) until 2030. Additional investments are mainly channelled towards onshore wind and PV assets and, to a lesser extent, into gas-based capacities.

55 \% MCE

55 \% MCTC

Scenario differences: Incremental generation costs at EU level

Annual incremental generation costs are higher in all 55% scenarios. Main drivers are higher CO_{2} costs (mid-term), and (long-term) RES \& import costs which dominate diverse savings in OPEX and external effects by the end of the decade. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net-Import	RES
External Effects	Total IGC

55 \% MCE

55 \% MCTC

Scenario differences: Consumer costs at EU level

Costs to consumers increase in all 55 \% scenarios due to higher wholesale price levels (approx. $5 € / \mathrm{MWh}$ in the 55% PM scenario), partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

€/MWh

€/MWh

\square Wholesale base volume RES support
\longrightarrow Consumer cost

Wholesale base volume RES support

Scenario differences: RES re-financing at EU level

The deployment of significant additional RES capacities increases RES system costs in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs, especially in the 55% Market based coal-to-clean scenario.

€/MWh

\longrightarrow RES system cost \longrightarrow RES support

€/MWh

\longrightarrow RES System Cost \longrightarrow RES support

€ / MWh

Utilization of gas capacities - EU

Comments

- In the short-term, utilization of (existing) gas capacities increases in the 55% scenarios due to
- CO_{2} price driven fuel switch from coal to gas
- Reduction of coal capacities
- As the expansion of replacement RES capacities increases towards 2030, the full load hours of the gas portfolio decreases to a lower level than in the 40 \% scenarios
- Thus gas capacities increasingly provide capacity to the market while generation plays a decreasing role

RESULTS FOR COAL-6

(e)enervis

Total emissions \& system costs - Coal-6

All coal-exit scenarios result in significant reduction of CO_{2}. Incremental effects of higher CO_{2} prices are diminishing as coal capacity is decreasing. Additional IGC are in a similar range in the 55% PM and 55% MCE scenarios, while higher CO_{2} price in 55% MCTC drives IGC up significantly at EU level as it affects markets without potential for coal substitution.

Capacity \& generation - Coal-6

Compared to the 40% PM scenario, the 55% scenarios see an earlier decommissioning \& accelerated reduction of remaining coal capacities which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix of the Coal6 cluster becomes less carbon-intensive \& RES shares increase by over 15 percentage points compared to 40% PM in 2030.

PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Installed capacities at Coal-6 level

In the 55% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier and steeper capacity reduction of coal driven by higher CO_{2} price trajectories. Higher CO_{2} prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

MW

- PV

- Wind onshore	- Biomass
- Hydro storage / ROR	- Hydro pumped storage
-Gas	- Coal
- Lignite	- Nuclear

55% MCE

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation at Coal-6 level

Earlier decommissioning and lower utilization of the remaining coal-fired units trigger temporary increased gas-based generation (midterm), especially in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by PV, wind onshore and some gas-based generation. All scenarios lead to an increase in renewable energy generation of over 140 TWh by 2030.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions at Coal-6 level

All 55% scenarios lead to significant CO_{2} savings for the Coal-6 cluster compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the market based coal exit scenario results in a cumulated reduction of 26%, the market-based coal-to-clean scenario in a cumulative reduction of 47% until 2030 compared to the 55% PM scenario.

Mio. $\mathrm{t} \mathrm{CO}_{2}$

55 \% MCE

Mio. $\mathrm{t} \mathrm{CO}_{2}$

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Incremental generation costs at Coal-6 level

Annual incremental generation costs for the Coal-6 cluster are higher in the 55% scenarios. Main drivers are add. CO_{2} costs (mid-term), and RES \& import costs (long-term), which dominate diverse savings in OPEX and external effects by the end of the decade.

Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\sim Total IGC

55 \% MCE

55 \% MCTC

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\sim Total IGC

Scenario differences: Consumer costs at Coal-6 level

Costs to consumers increase in all 55% scenarios for the Coal-6 cluster due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

\longrightarrow Consumer cost

€/MWh

—Consumer Cost

€/MWh

Wholesale base volume RES support

Scenario differences: Investment volumes at Coal-6 level

Required additional investments into the power-generating infrastructure (Coal-6) accumulate to $73 \mathrm{bn} €(55 \% \mathrm{PM}$), $66 \mathrm{bn} €$ (55 \% Market based coal exit) and 96 bn $€$ (55 \% Market based coal-to-clean) until 2030. Additional investments are mainly channelled towards onshore wind and PV assets and, to a lesser extent, into gas-based capacities.

55 \% MCE

Mio. € / a

55 \% MCTC

Mio. $€ / a$

Scenario differences: RES re-financing at Coal-6 level

The deployment of significant additional RES capacities increases RES system costs in the 55 \% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. The additional required RES support decreases especially in the 55% Market based coal-to-clean scenario.

€ / MWh

RES system cost \longrightarrow RES support

55 \% MCE
$€ / \mathrm{MWh}$

Wholesale base prices deltas - Coal-6

A strong initial impact on wholesale prices can be observed in all 55% scenarios, which is reduced towards 2030 as the generation-mix becomes less carbon-intensive. The increase levels out at below $5 € /$ MWh in the 55% PM \& 55% Market based coal exit scenario. In the case of PL, prices even decrease. $55 \% \mathrm{PM}$ has the lowest impact on price levels, due to the lower assumed CO_{2} prices.

55% MCTC

Utilization of gas capacities - Coal-6

RESULTS ON COUNTRY LEVEL

BG

Total emissions \& system costs - BG

Capacity \& generation - BG

Compared to the 40 \% PM scenario, the 55% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in Bulgaria, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive and RES shares (on demand) increase by over 40 percentage points by 2030 in the 55% scenarios.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM).

Scenario differences: Installed capacities in BG

In the 55% scenarios, the remaining coal capacities are substituted with a mix of PV, wind onshore and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier and steeper capacity reduction of coal units driven by higher CO_{2}-price trajectories. The higher CO_{2}-prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

Scenario differences: Power generation in BG

Earlier decommissioning and lower utilization of the remaining coal-fired units in Bulgaria trigger temporary increased gas-based generation (mid-term), especially in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by PV, wind onshore and some gas-based generation.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in BG

All 55% scenarios lead to significant CO_{2} savings in Bulgaria compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the 55% PM scenario results in a cumulative reduction of 92 Mio.t. of CO_{2} (market based coal exit: 100 Mio.t.; market-based coal-to-clean: 113 Mio.t.) until 2030 compared to the 55% PM scenario.

55 \% PM

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCE

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

\square CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in BG

Required additional investments into Bulgaria's power-generating infrastructure accumulate to 6.8 bn € (55 \% PM), 6.9 bn € (55 \% Market based coal exit) and 7.3 bn $€(55 \%$ Market based coal-to-clean) until 2030. Additional investments are mainly channelled towards onshore wind and PV assets and, to a lesser extent, into gas-based capacities.

55 \% PM

55 \% MCE

Mio. $€ / \mathrm{a}$

55 \% MCTC

Scenario differences: Incremental generation costs in BG

Annual incremental generation costs are lower in Bulgaria in all 55% scenarios. Main drivers are lower OPEX and costs related to external effects, which overcompensated RES \& import costs. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\longrightarrow Total IGC

55 \% MCE

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\sim Total IGC

55 \% MCTC

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\sim Total IGC

Scenario differences: Consumer costs in BG

Costs to consumers increase in all 55 \% scenarios in Bulgaria (in comparison with the 40 \% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

€/MWh

$€ / \mathrm{MWh}$

Wholesale base volume RES support
\longrightarrow Consumer cost

$€ / \mathrm{MWh}$

Wholesale base volume \simeq RES support

Scenario differences: RES re-financing in BG

The deployment of significant additional RES capacities increases RES system costs in Bulgaria in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. The additional required RES support (compared to the 40% PM scenario) decreases in the mid-20s before increasing slightly after 2029.

$€ / \mathrm{MWh}$

€ / MWh

€/MWh

CZ

Total emissions \& system costs - CZ

Capacity \& generation - CZ

Compared to the 40% PM, the 55% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in the Czech Republic, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive and RES shares (on demand) increase by 20 percentage points by 2030 (55% scenarios).

Scenario differences: Installed capacities in CZ

In all 55% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55 \% Market based scenarios see an earlier and steeper capacity reduction of coal units driven by higher CO_{2}-price trajectories. The higher CO_{2}-prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

55% MCF

55 \% MCTC

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation in CZ

Earlier decommissioning and lower utilization of the remaining coal-fired units in the Czech Republic trigger temporary increased gasbased generation (mid-term), especially in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by wind onshore, PV and gas-based generation.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in $\mathbf{C Z}$

All 55% scenarios lead to significant CO_{2} savings in the Czech Republic compared to the $40 \% \mathrm{PM}$ scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the $55 \% \mathrm{PM}$ scenario results in a cumulative reduction of 200 Mio.t. of CO_{2} (market based coal exit: 234 Mio.t.; market-based coal-to-clean: 275 Mio.t.) until 2030 compared to the 40% PM scenario.

Mio. $\mathrm{t} \mathrm{CO}_{2}$

\simeq CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

\simeq CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in CZ

Required additional investments into the Czech Republic's power-generating infrastructure accumulate to 7.3 bn $€(55 \%$ PM), 8.1 bn $€$ (55 $\%$ Market based coal exit) and 8.3 bn $€(55 \%$ Market based coal-to-clean) until 2030. Additional investments are mainly channelled towards onshore wind and PV assets and, to a lesser extent, into gas-based capacities.

Mio. $€ / \mathrm{a}$

55 \% MCE

Mio. $€ / \mathrm{a}$

55 \% MCTC

Scenario differences: Incremental generation costs in CZ

Annual incremental generation costs in the Czech Republic are higher in all 55% scenarios. Main drivers are higher RES \& significant import costs which dominate diverse savings in OPEX and external effects by the end of the decade. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\longrightarrow Total IGC

55 \% MCE

55 \% MCTC

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\sim Total IGC

Scenario differences: Consumer costs in CZ

Costs to consumers increase in all 55 \% scenarios in the Czech Republic (in comparison with the 40 \% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

€/MWh

€/MWh

€ / MWh

Wholesale base volume RES support
—Consumer cost

Scenario differences: RES re-financing in CZ

The deployment of significant additional RES capacities increases RES system costs in the Czech Republic in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. The required additional RES support decreases over time, especially in the 55% Market based coal-to-clean scenario.

€/MWh

€/MWh

€ / MWh

DE

Total emissions \& system costs - DE

Capacity \& generation - DE

Compared to the 40 \% PM, the 55 \% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in Germany, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive \& RES shares (on demand) increase by over 30 percentage points by 2030 (55% scenarios).

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55 \% PM minus 40 \% PM).

PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Installed capacities in DE

In all 55 \% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier and steeper capacity reduction of coal units driven by higher CO_{2}-price trajectories. The higher CO_{2}-prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

55 \% MCTC

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation in DE

Earlier decommissioning and lower utilization of the remaining coal-fired units in Germany trigger temporary increased gas-based generation (mid-term), especially in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by wind onshore, PV and gas-based generation.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in DE

All 55% scenarios lead to significant CO_{2} savings in Germany compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the 55% PM scenario results in a cumulative reduction of 364 Mio . t of CO_{2} (market based coal exit: 518 Mio.t.; market-based coal-to-clean: 601 Mio.t.) until 2030 compared to the 40% PM scenario.

55 \% PM

Mio. $\mathrm{t} \mathrm{CO}_{2}$

55 \% MCE

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in DE

Required additional investments into Germany's power-generating infrastructure accumulate to 28 bn € (55% PM), 33 bn € (55% Market based coal exit) and 35 bn $€(55 \%$ Market based coal-to-clean) until 2030. Additional investments are mainly channelled towards onshore wind and PV assets and, especially in the 55% Market based scenarios, to some extent into gas-based capacities.

55 \% MCE

Mio. €/a

55 \% MCTC

Scenario differences: Incremental generation costs in DE

Annual incremental generation costs in Germany are higher in all 55% scenarios. Main drivers are higher CO_{2} costs (mid-term), and (long-term) RES \& import costs which dominate diverse savings in OPEX and external effects by the end of the decade. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

55 \% MCE

55% MCTC

Scenario differences: Consumer costs in DE

Costs to consumers increase in all 55 \% scenarios in Germany (in comparison with the 40 \% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

$€ / \mathrm{MWh}$

€/MWh

\square Wholesale base volume RES support
—Consumer cost

€/MWh

\square Wholesale base volume \square RES support

Scenario differences: RES re-financing in DE

The deployment of significant additional RES capacities increases RES system costs in Germany in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. In the 55% Market based coal-to-clean scenario, no additional RES support is required in comparison with the $40 \% \mathrm{PM}$ scenario.

€ / MWh

55 \% MCTC
$€ / \mathrm{MWh}$

RES system cost
-RES support

PL

Total emissions \& system costs - PL

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55 \% PM minus 40 \% PM).

Capacity \& generation - PL

Compared to the 40 \% PM scenario, the 55 \% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in Poland, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive \& RES shares (on demand) increase by over 45 percentage points by 2030 (55% scenarios).

Scenario differences: Installed capacities in PL

In all 55 \% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier and steeper capacity reduction of coal units driven by higher CO_{2}-price trajectories. The higher CO_{2}-prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation in PL

Earlier decommissioning and lower utilization of the remaining coal-fired units in Poland trigger temporary increased gas-based generation (mid-term), especially in both 55 \% Market based scenarios. In the long run, coal-based generation in Poland is entirely compensated by wind onshore and PV generation.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in PL

All 55 \% scenarios lead to significant CO_{2} savings in Poland compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the $55 \% \mathrm{PM}$ scenario results in a cumulative reduction of 195 Mio.t. of CO_{2} (market based coal exit: 257 Mio.t.; market-based coal-to-clean: 304 Mio.t.) until 2030 compared to the 40% PM scenario.

Mio. $\mathrm{t} \mathrm{CO}_{2}$

55 \% MCE

Mio. $\mathrm{t}_{\mathrm{CO}}^{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in PL

Required additional investments into Poland's power-generating infrastructure accumulate to $24 \mathrm{bn} €(55 \% \mathrm{PM}$), 27 bn $€$ (55% Market based coal exit) and 34 bn $€(55 \%$ Market based coal-to-clean) until 2030. Investments are mainly channelled towards onshore wind and PV assets, to a lesser extent into gas-firing units.

Mio. € / a

55 \% MCTC

Mio. € / a

Scenario differences: Incremental generation costs in PL

Annual incremental generation costs in Poland are higher in all 55% scenarios. Main drivers are higher CO_{2} costs (mid-term), and RES costs (long-term) which dominate diverse savings in OPEX, external effects by the end of the decade. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	$=$ Total IGC

55 \% MCE

55% MCTC

Scenario differences: Consumer costs in PL

Costs to consumers increase in all 55% scenarios in Poland (in comparison with the 40% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030. Revenues from auctioned CO_{2} certificates at the same time imply a source of income.

[^1]
Scenario differences: RES re-financing in PL

The deployment of significant additional RES capacities increases RES system costs in Poland in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus mitigate support needs. The additional required RES support (compared to the 40% PM scenario) decreases in the mid-20s before increasing slightly after 2028.

€ / MWh

$€ / \mathrm{MWh}$

RO

Total emissions \& system costs - RO

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55 \% PM minus 40 \% PM).

Capacity \& generation - RO

Compared to the 40 \% PM scenario, the 55 \% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in Romania, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive \& RES shares (on demand) increase by over 25 percentage points by 2030 (55% scenarios).

Generation

Scenario differences: Installed capacities in RO

In all 55% scenarios, the remaining coal capacities are substituted with a mix of wind onshore, PV and gas. Compared to the 55% PM, the 55% Market based scenarios see an earlier reduction of coal capacity, which is also driven by higher CO_{2}-price trajectories. The higher CO_{2}-prices also trigger additional market based RES expansion, especially in the 55% Market based coal-to-clean scenario.

55 \% MCTC

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation in RO

Earlier decommissioning and lower utilization of the remaining coal-fired units in Romania trigger temporary increased gas-based generation (mid-term) in both 55 \% Market based scenarios. In the long run, coal-based generation is compensated by wind onshore, PV and gas-based generation by 2030.

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in RO

All 55% scenarios lead to significant CO_{2} savings in Romania compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the 55% PM scenario results in a cumulative reduction of 74 Mio.t. of CO_{2} (market based coal exit: 73 Mio.t.; market-based coal-to-clean: 79 Mio.t.) until 2030 compared to the 40% PM scenario.

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCE

Mio. $\mathrm{t} \mathrm{CO}_{2}$

\square CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55 \% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in RO

Required additional investments into Romania's power-generating infrastructure accumulate to 6.5 bn € (55 \% PM), 6.9 bn € (55 \% Market based coal exit) and 9.7 bn $€(55 \%$ Market based coal-to-clean) until 2030. Investments are mainly channelled towards onshore wind and PV assets and, to a lesser extent, into gas-based capacities.

55 \% MCE

Mio. $€ / \mathrm{a}$

55 \% MCTC

Mio. $€ / \mathrm{a}$

Scenario differences: Incremental generation costs in RO

Annual incremental generation costs in Romania are higher in all 55% scenarios. Main drivers are higher CO_{2} costs (mid-) and RES costs (long-term). Import costs remain higher in the 55 \% Market based coal-to-clean scenario but tend to be lower after 2023 in both, the 55% PM \& 55% Market based coal exit scenario. Note: Revenues from auctioned CO_{2} certificates can also be seen as source of income.

OPEX var (ex. Co2)	CO2
OPEX fix	CAPEX
Net import	RES
External effects	\longrightarrow Total IGC

55 \% MCE

55 \% MCTC

Scenario differences: Consumer costs in RO

Costs to consumers increase in all 55 \% scenarios in Romania (in comparison with the 40% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

$€ / \mathrm{MWh}$

$€ / \mathrm{MWh}$

Wholesale base volume RES support
—Consumer cost

$€ / \mathrm{MWh}$

Wholesale base volume \simeq RES support

Scenario differences: RES re-financing in RO

The deployment of significant additional RES capacities increases RES system costs in Romania in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. In the case of Romania, no significant additional RES support is required, when comparing the 55% scenarios with the 40% PM scenario.

$€ / \mathrm{MWh}$

€/MWh

RES system cost
(C) enervis

Total emissions \& system costs - SI

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55 \% PM minus 40 \% PM). PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Capacity \& generation - SI

Compared to the 40 \% PM scenario, the 55% scenarios lead to an earlier decommissioning \& accelerated reduction of remaining coal capacities in Slovenia, which are substituted over time with a mix of wind onshore, PV \& gas units (flexibility demand). The generation mix becomes less carbon-intensive \& RES shares (on demand) increase by over 20 percentage points by 2030 (55% scenarios).

PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Installed capacities in SI

In the 55% scenarios, the remaining coal capacities in Slovenia are substituted with a mix of PV, wind onshore \& gas. Compared to the 55 \% PM, the 55% Market based scenarios see an earlier reduction of coal capacity (2023). Higher CO_{2}-prices also trigger add. market based RES expansion, especially in the 55% Market based coal-to-clean scenario, where gas units are more strongly deployed.

55% MCE

Note: Graphs depict scenario differences to the 40% PM scenario (e.g. 55% PM minus 40% PM). \quad PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Scenario differences: Power generation in SI

Earlier decommissioning and lower utilization of the remaining coal-fired units trigger temporary increased gas-based generation (midterm) in both 55 \% Market based scenarios. On the long run, coal-based generation is mostly compensated by wind and PV generation, and, in case of the 55% Market based coal-to-clean scenario, also supplemented with significant gas-based generation by 2030.

Scenario differences: $\mathbf{C O}_{\mathbf{2}}$ emissions in $\mathbf{S I}$

All 55 \% scenarios lead to significant CO_{2} savings in Slovenia compared to the 40% PM scenario. Until 2024, the additional reduction is driven only by the CO_{2} price. In total, the 55% PM scenario results in a cumulative reduction of 23 Mio .t. of CO_{2} (market based coal exit: 28 Mio.t.; market-based coal-to-clean: 35 Mio.t.) until 2030 compared to the 40% PM scenario.

Mio. $\mathrm{t} \mathrm{CO}_{2}$

Mio. $\mathrm{t} \mathrm{CO}_{2}$

\simeq CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

55% MCTC

Mio. $\mathrm{t} \mathrm{CO}_{2}$

CO2-Emissions [t/a] Cumulated CO2-Emissions [t]

Scenario differences: Investment volumes in SI

Required additional investments into Slovenia's power-generating infrastructure accumulate to 0.93 bn € (55 \% PM), 0.98 bn € (55 \% Market based coal exit) and 1.3 bn $€(55 \%$ Market based coal-to-clean) until 2030. Investments are mainly channelled towards new PV assets. In the 55% Market based coal-to-clean scenario, additional investments in gas-based units take place between 2023 and 2026.

Scenario differences: Incremental generation costs in SI

Annual incremental generation costs in Slovenia are higher in all 55% scenarios. Main drivers are higher import and RES costs which dominate diverse savings in OPEX and external effects by the end of the decade. Note: Revenues from auctioned CO_{2} certificates can also be seen as a source of income.

Scenario differences: Consumer costs in SI

Costs to consumers increase in all 55 \% scenarios in Slovenia (in comparison with the 40 \% PM scenario) due to higher wholesale price levels, partly driven by higher CO_{2} prices and net-imports. The effect is mitigated with increased availability of carbon-free renewable generation towards 2030.

€/MWh

[^2]\longrightarrow Consumer cost

$€ / \mathrm{MWh}$

Wholesale base volume \simeq RES support

Scenario differences: RES re-financing in SI

The deployment of significant additional RES capacities increases RES system costs in Slovenia in the 55% scenarios. Higher wholesale prices imply higher market revenues of RES generation and thus decrease support needs. The required additional RES support decreases, especially in the two 55% Market based scenarios.

€/MWh

€ / MWh

€ / MWh

RES system cost
\longrightarrow RES support

METHODOLOGY \& MAIN ASSUMPTIONS

Methodology \& scenarios

SCENARIO DESIGN

Definition of political scenarios
Basis for power market modeling

ASSUMPTIONS

Techno-economical parameters
RES, coal trajectories CO_{2} prices

MODELING

Power plant dispatch \& investment up to 2030 Development of capacity and generation mix

RESULTS

Incremental generation costs* (ICG)
Investment volumes
CO_{2} - and other emissions
40% reduction scenario

[^3]
enervis fundamental model eMP

Model approach: players and their decision scope

Different players within modeling framework (rows) and their respective degrees of freedom (columns) are shown. The table cells define the model.

Scenario Overview (I)

Three alternatives are modelled for implementing a 2030 EU -wide coal phase-out, quantifying CO_{2} prices levels corresponding to and implications of fully market-based coal phase-out and renewable phase-in versus a policy mix.

	40 \% Policy mix	55 \% Policy mix coal exit	55 \% Market based coal exit	55 \% Market based coal-toclean
CO_{2} Prices	Ca. 35€/t in 2030 / based on EU Reference Sc. 2016	Ca. 54€/t in 2030 / based on TYNDP 2020 DE Sc.	Heuristical iteration: such that in 2030 all coal units opt for economic decommissioning (2 years of negative net margins), from 2021	Heuristical iteration: such that in 2030 renewable generation at the level of 55% PM scenario is economically feasible
Exogenous coal trajectory	According to national plans \& strategies	Phase-out of all coal capacities by 31.12.2030 (by age)	According to national plans \& strategies	As resulting in 55 \% MCE
Economic decommissioning of coal	none		Decommissioning according to economics but max. 2 years earlier than in 55 \% PM trajectory	none
Exogenous RES trajectory	Based on NECPs	Ambitious renewable expansion to substitute coal generation (vs. 40 \%)		Expansion to the same 2030 generation level as in 55 \% PM scenario
Endogenous RES expansion	none	Minor additional market based expansion		

Energy economic effects of a policy mix (coal phase-out, supported RES, CO_{2} price increase)

What level of CO_{2} price can lead to a market based coal
phase-out unit 2030?
What level of CO_{2} price can compensate RES support?

Scenario Overview (II)

Three alternatives are modelled for implementing a 2030 EU -wide coal phase-out, quantifying CO_{2} prices levels corresponding to and implications of fully market-based coal phase-out and renewable phase-in versus a policy mix.

	40% Policy mix	55% Policy mix coal exit	55% Market based coal exit	55% Market based coal-to- clean
Fuel Prices	Based on WEO 2020 projections			
Gas Capacities	Merchant driven deployment in all regions / partial CHP replacement			
Nuclear Capacities	Existing: According to exit plans or lifetime assumption where applicable / Newly built units not relevant until 2030 or realization not assumed in EU countries			
Demand	According to national projections and sources / NECPs / partial electrification of mobility and heating sectors based on enervis assumptions			
Security of Supply	Peak Load, availability... etc. according to selected sources			
DSM	DSM potential assumed to be 5% of national peak load			
Interconnection	Based on entso-e data and TYNDP Projects			

Fuel \& CO $\mathbf{2}_{2}$ price* assumptions

Fuel prices are the same across all four scenarios. CO_{2} prices are differentiated depending on scenario-specific reduction ambition and implied policy approach.

Coal price

- In all scenarios, 2030 figures are based on WEO 2020 Stated Policies Scenario
- 2020 figure based on historical data
- 2021 figure based on future quotes Jan/Feb 2021

Gas price

- In all scenarios 2030 figures are based on WEO 2020 Stated Policies Scenario
- 2020 figure based on historical data
- 2021 figure based on future quotes Jan/Feb 2021

CO_{2} price (EU ETS)

- 55 \% PM 2030 level based on TYNDP 2020 Distributed Energy Sc.
- 40 \% PM 2030 level based on EC Ref. 2016
- 2021 figure based on future quotes Jan/Feb 2021

Oil price

- In all scenarios, 2030 figures are based on WEO 2020 Stated Policies Scenario
- 2020 figure based on historical data
- 2021 figure based on future quotes Jan/Feb 2021

Incremental generation costs (I)

- For an economic comparison of scenarios the differences in generation cost are of main relevance. This study look at indicator called "Incremental generation costs".
- Generation costs are costs that are caused when generating (or importing) power in a country or system. These costs typically include all variable and fixed costs (including costs of capital) for building and operating power generation units.
- Incremental generation costs includes costs that change in between scenarios, whereas all costs that occur in all scenario do not influence "merit" in comparison and are this not necessarily included.
- If generation costs are comparatively lower in one scenario vs. another, this means that power is generated more cost efficiently, which can either reduce endconsumer costs or increase rents ("profits") of power producers by the same amount (or, of course, both partially). Since both producer rents and consumer prices are, from an economic point of view, distributional in nature, economic efficiency is often assessed based on generation costs.

Incremental generation costs (II)

In this project we have defined the following cost elements:

- Net-Import Costs: Any increase in net-power import from surrounding market zones has to be taken into consideration and was therefore assessed based on wholesale import prices.
- External Effects: External effects (mostly) represent negative health effects caused by pollutants emitted in the context of coal-based power generation, for the sake of comparability, these negative health effects were evaluated in monetary terms and expressed as costs.
- CO_{2} Costs: This includes all costs caused by procurement of CO_{2} certificates within the ETS. Please note, that these costs also create additional income e.g. for governmental institutions.
- OPEX: This component covers operational costs of conventional power generation. This includes fuel costs but, in this instance excludes carbon costs, which were addressed separately.
- CAPEX: Capital costs caused by conventional power generation. This represents investment and capital costs.
- RES Costs: All costs relevant for investing in and operation of renewable energy sources (OPEX and CAPEX of RES).

Assumptions for replacing coal-based CHP plants

Comments

- In this project a simplified 'heat capacity balancing approach' was conducted.

1. Based on Eurostat data and typical technology parameters of coal CHP plants, heating capacity of coal plants was estimated.
2. Heating capacity was reduced by a country specific factor representing an assumed contribution of other technologies (e.g. RES heating)
3. This ,Target heating capacity was substituted by heating capacity of gas plants
4. Based on typical technology parameters of CHP gas plants, electrical capacity of gas plants was calculated.
5. Actual heat generation to be optimized by the power market model

STRATEGIC RESERVES

(C)enervis

Assumptions for deriving strategic reserve capacities

In this project, a "Capacity Balancing Approach" was used to calculate strategic reserve demand on a national level / If these strategic reserves are contracted, even so called "Dunkelflaute" situations should be manageable.

- Calculations are based on the assumption, that hard coal units can contribute to the strategic reserve for up to 10 years after market exit.
- Additional assumptions:
- Required Margin on peak load = 9 \%
- DSM can reduce peak load by 5 \%
- European levelling effects can reduce peak load (pro rata) by 7.5%
- Capacity credit of RES: PV = 0%; onshore = 4%, offshore = 7%

Strategic reserve deltas - Coal-6

In comparison with the 40 \% PM scenario, the 55% scenarios see additional strategic reserve needs* in the Coal-6 countries from the mid-2020s onwards. In the 55% Market based coal-to-clean scenario, this trend changes, and by the end of the decade (2028 onwards) lower strategic reserve capacities are required due to additional gas \& (partially) wind onshore in the power systems.

wnw Strategic reserve Cum. invest cost of strategic reserve

55 \% MCE

55 \% MCTC

NWw Strategic reserve Cum. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - BG

The capacity balancing approach leads to additional strategic reserve requirements for Bulgaria beyond those the power market model would deploy based on market price signals alone. 2026 onwards, additional capacities would be required in all 55 \% scenarios for ensuring peak load to be served primarily on a national basis.

wwal Strategic reserve Cum. invest cost of strategic reserve

55 \% MCE

55 \% MCTC

NWw Strategic reserve ——um. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - CZ

For the Czech Republic, only by the end of the decade some minor additional strategic reserve capacities would be required in the 55% scenarios for ensuring peak load to be served primarily on a national basis. In the 55% Market based coal-to-clean scenario however, the trend changes by 2030 where less strategic reserve capacities is required.

wnw Strategic reserve Cum. invest cost of strategic reserve

55 \% MCE

man Strategic reserve Cum. invest cost of strategic reserve

55 \% MCTC

aww Strategic reserve Cum. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - DE

For ensuring peak load to be served primarily on a national basis, additional reserve capacities beyond those the power market model would deploy based on market price signals alone would be required in the 55% scenarios for Germany. Most of the reserve demand of the Coal-6 concentrates in Germany.

waw Strategic reserve Cum. invest cost of strategic reserve

55 \% MCE

55 \% MCTC

dww Strategic reserve \longrightarrow Cum. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - PL

For Poland, in all 55 \% scenarios no additional strategic reserve capacities beyond those which can be contracted from existing capacities are required to serve peak load on a national basis.

[^4]

awnw Strategic reserve ——um. invest cost of strategic reserve

55 \% MCTC

NWw Strategic reserve ——um. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - RO

In Romania, some additional reserve capacities beyond what the power market model would deploy based on market price signals alone would be required. The applied capacity balancing approach leads to additional „out of the market" reserves in the in the 55% Policy \& the 55% Market based coal exit scenario. In the 55% Market based coal-to-clean scenario, less strategic reserve capacities are required.

wnw Strategic reserve Cum. invest cost of strategic reserve

55 \% MCE

aww Strategic reserve Cum. invest cost of strategic reserve

55 \% MCTC

Nww Strategic reserve Cum. invest cost of strategic reserve

Note: No net demand for newly built strategic reserves is caused if hard coal units decommissioned in the 55% scenarios can be utilized as reserves. Hence costs depicted in this slide represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.

Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

Strategic reserve deltas - SI

In Slovenia, only in the 55% Market based coal exit scenario some additional strategic reserve capacities beyond what the power market model would deploy based on market price signals alone would be required. The applied capacity balancing approach leads to additional „out of the market" reserves 2028 onwards.

[^5]55 \% MCE

55 \% MCTC
 represent the costs of reserves if the capacity had to be provided by newly built gas units (OCGT) and hence would be lower in case decommissioned coal would be used instead.
enervis energy advisors GmbH
Schlesische Str. 29-30
10997 Berlin
Germany
Fon +49 (0)30 695175-0
Fax +49 (0)30 695175-20

E-Mail kontakt@enervis.de

[^0]:

[^1]: Note: Graphs depict scenario differences to the 40\% PM scenario (e.g. 55 \% PM minus 40 \% PM).
 PM = Policy mix; MCE = Market-based coal-exit; MCTC = market-based coal-to-clean

[^2]: \square Wholesale base volume \simeq RES support

[^3]: methodology section.

[^4]: mww Strategic reserve ——um. invest cost of strategic reserve

[^5]: mmw Strategic reserve \longrightarrow Cum. invest cost of strategic reserve

