

Redispatch and Curtailment to Manage Grid Integration

11th of April 2019 Dr. Johannes Henkel

Agenda

- **1.** Introduction 50Hertz
- 2. Integration of Renewables Market Design
- 3. Integration of Renewables Grid
- 4. Conclusions

50Hertz at a glance

		2010 (share Germany)	2017/18 (share Germany)
ENERGINET DK SO	Grid area	109,589 km² (~31%)	109,619 km²(~31%) ¹
	Length of lines	9,800 km (~30 %)	10,200 km (~30 %) ¹
TENNET HAMBURG DSchwest 20 BRANDCHBURG	Max. load	~ 17 GW (~20 %)	~ 16 GW (~20 %) ¹
ACHSEN	Power consumption (based on electricity supplied to end-consumers in acc. with Renewables Energy Law "EEG")	~ 98 TWh (~20 %)	~ 96 TWh (~20 %)*
	Installed capacities - of which Renewables - of which Wind	38,354 MW (~35%) 15,491 MW (~30%) 11,318 MW (~40%)	54,069 MW (~26%) ¹ 32,931 MW (~29%)* 19,403MW (~35%)*
	RES share in power consumption	~ 25 %	~ 55.0 %*
	Turnover - of which Grid	5.6 bn. € 0.6 bn. €	9.9 bn. €¹ 1.3 bn. €¹
TENNET BAYERN	Employees	643	1,043 ¹

Source: 50Hertz; ¹as of 31/12/2017; *preliminary data; as of 08/01/2019

50Hertz as part of the European Electricity System

Transmission grids are the technical backbone of the energy supply in Germany and in Europe

Source: 50Hertz *German Renewable Energy Law

RES development in Germany

- ∼ 30,000 plants
- 1,665* MW inst. wind in Germany

2018

- ~ 221,000 plants
 2,233* MW ins. wind in Germany
- > 1,600,000 plants
- 49,628* MW inst. wind in Germany
- 41,687* MW PV

The implementation of the German Renewables Energy Law (EEG) led to a massive growth of RES in Germany.

Source: 50Hertz; 50Hertz, TenneT, Amprion, TransnetBW, Google Earth; *prelir

*preliminary data

Installed RES capacity in 50Hertz area has doubled since 2010

Installed RES capacity and RES generation in 50Hertz

Electricity from RES covered ~55 % of consumption in the 50Hertz area. Thus Eastern Germany is a pilot region for the energy transition.

Source: 50Hertz

Agenda

- 1. Introduction 50Hertz
- 2. Integration of Renewables Market Design
- 3. Integration of Renewables Grid
- 4. Conclusions

The Introduction of the Feed-in-Premium in Germany created a large Incentive for better Forecasts

Promotion level, determined in auction

Market Premium
Market Value
(revenues at the
market)

The market premium is determined monthly by the TSOs (ex-post). It is the difference of promotion level and the calculated market value for a certain month.

The market value is the average monthly wholesale price (Day-Ahead) weighted with an **average generation profile** (technology specific)

With the shift from FIT to FIP full balancing responsibility (forecast errors!) in hand of the generators

Electricity Trading Volumes in Short Term Markets are increasing strongly

RES generators / aggregators have a strong incentive to be balanced and therefore correct all forecast errors in short term markets.

Ultra-short term volatility Grid Situation Sunday, 2016/08/28

Wind Forecast

Balancing demand 50Hertz

The system must be able to react fast to changing forecasts

Solution: Enhanced forecasts, short term trading

In Germany the necessary control power is decreasing in volume and costs

Mio. € GW % 1.000 12 40 900 35 10 800 30 -82% 700 8 25 600 20 500 6 400 15 4 300 10 200 2 5 100 0 0 0 2010 2011 2012 2013 2014 2015 2016 2017 2018 2010 2011 2012 2013 2014 2015 2016 2017 2018 MRL (-) SRL (+) German Control Power "Paradox": MRL (+) PRL Despite increasing RES, demand for control SRL (-) RES share in gross consumption power is decreasing

Costs of Control Power Provided ²

Reason for the significant decrease is two-fold: Incentives for good forecasts (market design) as well as TSO imbalance netting (TSO process adaptation)

¹ total Germany, ² only capacity costs, costs for activations not included.

Control Power Provided ¹

Agenda

- 1. Introduction 50Hertz
- 2. Market Integration of Renewables
- **3.** Grid Integration of Renewables
- 4. Conclusions

Grid congestion is addressed by redispatch and RES-E curtailment by TSO

South bound grid extension and additional interconnectors are possible measures to address costly redispatch and RES-E curtailment.

¹ German real data from March and April 2015; Source: underlying map: IAEW, RWTH Aachen 2013; Data: 50Hertz

Redispatch: Action Options in Time

TSO Processes for Congestion Management

Day-Ahead 08-11h	 Week-<u>A</u>head-<u>P</u>lanning <u>P</u>rocess Use of reserve power plants, planning of forced start-up of market power plants
Day-Ahead 16-18h	 • 4-TSO Planning of preventive Redispatch measures • Includes starting/stopping blocks and large shifts in power plants
Day-Ahead 20-22h	 Day-Ahead Congestion Forecast Only singular measures, no global optimisation possible Insufficient lead time for changes > 1 GW
t-4h	Intraday Congestion Forecast (international, TSC Transmission Security Cooperation)
approx. t-2h	 Curative Redispatch RES curtailment

Congestion management in the 50Hertz area is declining due to grid expansion

Stabilisation of RES curtailment and significant redispatch costs reduction in 2018 – despite an RES expansion of 2,400 MW.

Source: 50Hertz; *preliminary data, as of 28/01/2019

**prognosis data, as of 28/01/2019

Conclusions

- Integration of Renewables is supported by
 - Market design with the right incentives for good RES forecasts (short / medium term)
 - Efficient TSO processes like redispatch, curtailment and imbalance netting in order to adress balancing and congestion issues (short / medium term)
 - Grid extension where necessary (medium term / long term)
- Up to a certain limit, RES curtailment is efficient as it is not economically viable to build grid for the "last kWh"

Thank you! Questions?

Dr. Johannes Henkel

50Hertz Transmission GmbH Heidestraße 2 10557 Berlin

030.5150-0 johannes.henkel@50hertz.com

www.50hertz.com

Veranstaltungsort, xx.xx.201x