

SEE RES variability and system impacts in high RES scenarios in 2030

László Szabó – András Mezősi November 2018

Unit commitment model is applied to SEE

Main assumptions:

- Assessment of the year 2030
- Base: SEERMAP Decarbonisation scenario
- Various weather regimes applied
- Look at the variability caused by higher RES and the system impacts (SEE RES increase is from 35% to 50%)

Focus areas:

- Critical week assessment (weeks where remaining capacity is lowest in season)
- Level of reserve capacities
- Start-ups
- Sensitivity cases: missing capacity and impact of Integration

Critical week electricity mix –winter, SEE region

More variability in production, export and pump storage by 2030 due to higher RES but the SEE system balances!

Critical week remaining margin – winter, SEE Region

Reserve margin does not fall below 35% in 2030

*Available import: Additional import possibilities taken into account above the utilised ones

Number of start-ups vs. utilization rates per unit in SEE Region, 2017

REGIONAL CENTRE FOR ENERGY

Number of start-ups vs. utilization rates per unit in SEE Region, 2030

Sensitivity assessment

Missing production -> demand, which cannot be satisfied

National demand exceeds available generation in Albania, Kosovo and Macedonia - but only in case of low interconnection

Low NTC scenario - 2030, winter

Missing production is not the results of spare capacities in the SEE Region, but due to the insufficient level of interconnectivity

- Variable generation from wind and PV can be managed and integrated well in the 2030 SEE power system
- In some periods the present cross-border capacity is insufficient to satisfy the consumption in some countries (Albania, Kosovo* Macedonia)
- Interconnection developments and market integration are key factors in the SEE region!

Further steps:

- Country-specific assessments to be carried out
- More sensitivity analyses on hydro utilization rates (especially, when the hydro production is low in the Region)
- The effect of CO₂ price and the introduction of ETS in WB6