

Der Wert der Energieeffizienz im Gebäudesektor in Zeiten der Sektorkopplung

Projektpartner

Alexandra Langenheld

Leitung Gesamtprojekt

Technischer Steuerungskreis

Huy Tran (ECF) Andreas Jahn (RAP) Sibyl Steuwer, Oliver Rapf (BPIE)

INSTITUT FÜR ENERGIE-UND UMWELTFORSCHUNG HEIDELBERG

Peter Mellwig
Dr. Martin Pehnt
Dr. Amany von Oehsen
Sebastian Blömer

- Leitung Konsortium
- Modellierung Gebäude
- Modellierung Wärmenetze

Begleitkreis

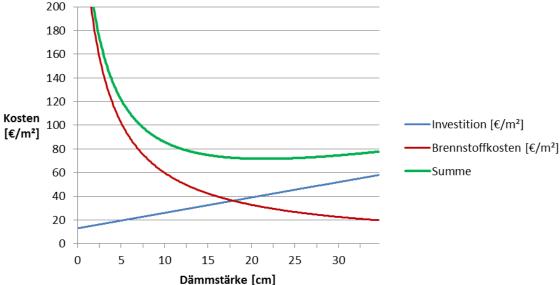
Experten Stakeholder Verbände

Norman Gerhardt Irina Ganal Dr. Dietrich Schmidt

- Modellierung Gesamtsystem
- Sektorübergreifende Optimierung und Wärmenetz

consentec

Christian Linke
Dr. Alexander Ladermann


 Modellierung Strom-Verteilnetze

Fraunhofer Consentec

Ziel der Studie

Bisher wurde gefragt, ob Maßnahmen im Gebäudebereich wirtschaftlich sind.
 Ob die Maßnahmen zu einem Ziel führen,

war weniger wichtig.

Heute lautet die Frage:
 "Wie kann das Ziel zu den
 geringsten Kosten erreicht werden?"

Fraunhofer Consentec

Ziel der Studie

- Quantifizierung der monetären, systemischen Vorteile von Effizienzmaßnahmen im deutschen Gebäudewärmesektor unter Berücksichtigung der Klimaschutzziele bis 2050 und der Alternativen in den anderen gekoppelten Sektoren.
- Benennen der zu ergreifenden "No-Regret-Maßnahmen" bis 2030 (Politikmaßnahmen, Investitionen), um die deutschen Klimaschutzziele zu den geringsten Kosten für die Volkswirtschaft zu erreichen.
- Benennen der zu vermeidenden oder zu korrigierenden "Lock-in-Maßnahmen", um eine Verteuerung oder Verzögerung der Klimaschutzziele zu vermeiden.

2014: Studie "Positive Effekte der **Energieeffizienz im Stromsektor"**

Abbildung 0-3

Positive Effekte von Energieeffizienz auf den

deutschen Stromse

STUDIE

Endbericht einer Studie von der Prognos AG (Institut für Elektrische Anlagen und Energiew → Vergleichbare Analyse für 40 2035 den Gebäudebereich 35 30 28 25 Mrd. € 202 21 20 15 15 20 12 15 10 11 5 Effizienz Energie-WWF Effizienz Energie-WWF plus konzept plus konzept Offshore-Netzanbindung Verteilungnetz Übertragungsnetz erneuerbare Stromerzeugung konventionelle Stromerzeugung

Einsparungen für die Stromerzeugung und die Netzinfrastruktur gegenüber dem BAU-Szenario

Was heißt "Effizienzwert"?

- Was ist der systemische "Wert der Energieeffizienz" im Gebäudebereich?
- Anders gefragt: Welche Kosten entstehen im Energiesystem, wenn Einsparmaßnahmen bei Gebäuden nur in geringerem Maß realisiert werden, sondern stattdessen mehr Wärmepumpen, PtG oder andere EE zugebaut werden müssen?

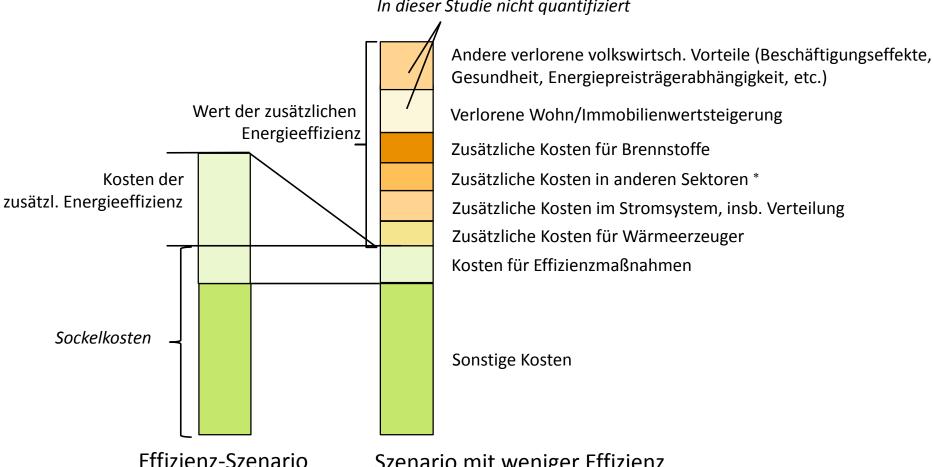
Rahmen (gilt für alle Szenarien)

- Senkung der THG-Emissionen aller Sektoren bis 2050 um 87,5%
- THG-Einsparung im Gebäudebereich bis 2050: 100%
- Sektorziel Gebäude 2030: 70 bis 72 Mio. t

Effizienz als EE-Enabler

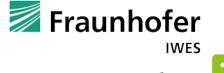
Wechselwirkung Erneuerbare/Effizienz

Berücksichtigt werden müssen in der Modellierung die Wechselwirkungen zwischen Effizienz und Erneuerbaren.


Effizienz der Gebäudehülle senkt ... erhöht Effizienz ... steigert EEwirtschaftl. der Anlagentechnik ... ermöglicht Deckungsgrade Potenziale einiger Bsp. niedrige Brennwertnutzung **Technologien Temperaturen** Bsp. JAZ von Bsp. Solarthermie Wärmepumpen Bsp. Wärmenetze

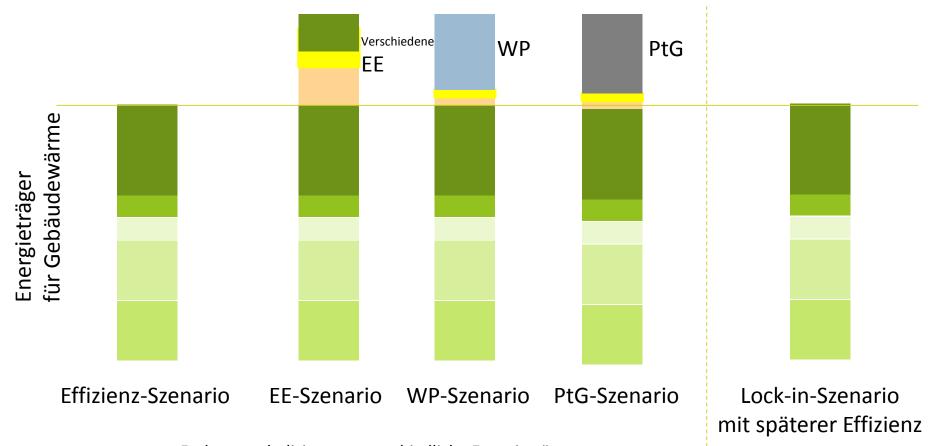
Was heißt "Effizienzwert"?

Vollkosten der Wärmeversorgung



In dieser Studie nicht quantifiziert

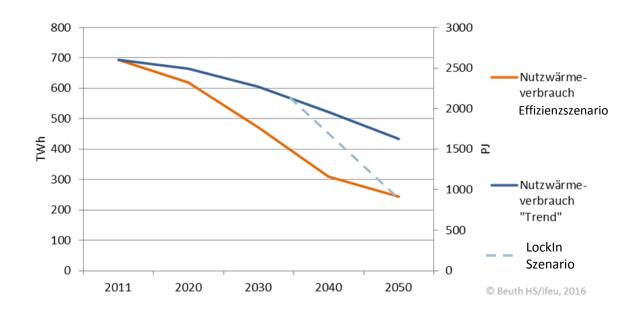
Szenario mit weniger Effizienz


* hier: Industrie und klassischer Stromsektor (Spitzenlastkraftwerke etc.)

Vorgehensweise (schematisch)

Vergleich der Kosten des Effizienz-Szenarios mit Szenarien, in denen verringerte Effizienz mit anderen EE-Optionen aufgefangen wird

• 9



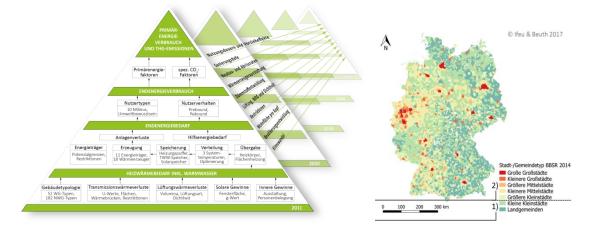
Ziel der Studie – Verlauf der Effizienz

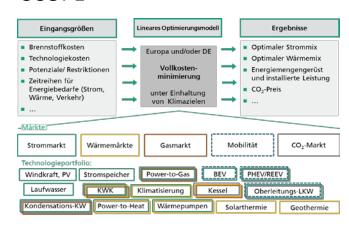
• 10

Effizienz	EE	WP	PtG	Lock In
Einsparungen durch Effizienz um ca. 50%	Schließen der Lücke durch Anlagentechnik			Erst Trend, dann wie Effizienzszenario

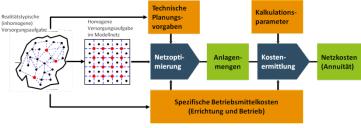
Quelle: Beuth HS, ifeu, 2016 Peter Mellwig ● 04.05.2017

Rahmenbedingungen


Effizienz	EE	WP	PtG	Lock In			
Einsparungen durch Effizienz um ca. 50%	Geringere	Erst Trend, dann wie Effizienzszenario					
Einheitliches Emissionsziel 2050 (z.B87,5%) THG (gegenüber 1990) sowie -55% THG in 2030 Gebäude ca. 100% THG-Reduktion in 2050							
THG-Ziel KSP für Gebäude 70 – 72 Mio. t erfüllt 2030 > 72 Mio.							
Bezugspunkt	Volkswirtschaftliche Differenzkosten zu "Effizienz" IWES / ifeu						


Eingesetzte Modelle

GEMOD Gebäudemodell


Wärmeatlas Deutschland

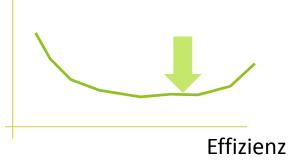
SCOPE

EXOGON

Schritt 1: Bestimmung des Effizienzszenarios

Philosophie:

Ambitioniertes, aber vernünftiges und realistisches (im Markt darstellbares) Effizienzniveau

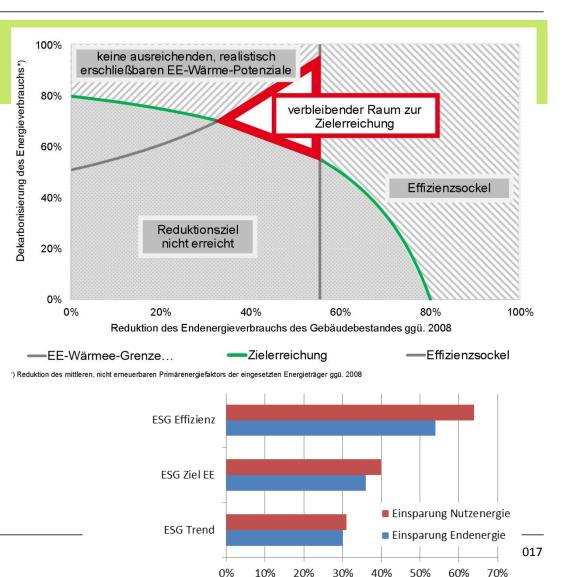

Bestimmung des Effizienzniveaus und Erzeugerparks:

Literaturauswertung und Sondierungsrechnungen mit GEMOD

Erzeugermix orientiert an Wärmegestehungskosten, an Potenzialgrenzen und Marktaufwuchs von EE-Wärme

Kein Schwerpunkt auf eine Technologie

Vollkosten

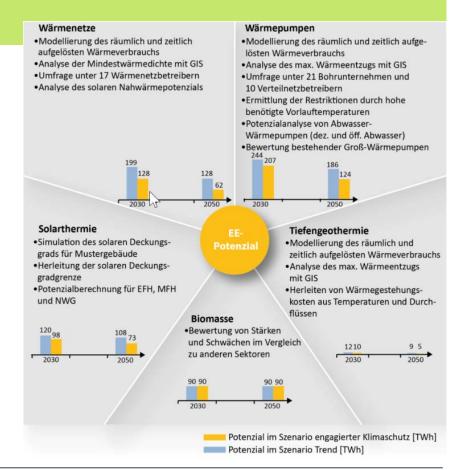

13

Vorarbeiten (I)

Effizienzstrategie Gebäude ESG Prognos, ifeu, IWU

Vorarbeiten (II)

Dämmrestriktionen und Anlagenpotenziale


Beuth Hochschule, ifeu

Beuth Hochschule für Technik Berlin

ifeu-Institut für Energie- und Umweltforschung Heidelberg

Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich

Kurztitel: Anlagenpotenzial

Zeitplan

Ende März 2017 Auftakt-Treffen

Ende April 20171. Begleitkreistreffen

 September 2017 Vorlage der vorläufigen Ergebnisse für Effizienzszenario + 2 Alternativszenarien

Ende Sept. 20172. Begleitkreistreffen

 Ende Sept. 2017 Vorlage der abgestimmten Ergebnisse für Fffizienzszenario + 2 Alternativszenarien

 März 2018 Vorlage Schlussbericht inkl. Ergebnisse für 2 weitere Alternativszenarien

Vielen Dank für Ihre Aufmerksamkeit!