Fraunhofer IWES

Energiesystemtechnik

Norman Gerhardt, Fabian Sandau Berliner Energietrage 2016 – Wie verschmelzen Strom- und Wärmesektor?

Berlin, 13. April 2016

Sektorübergreifende Energiewende – Robuste Strategien, kritische Weichenstellungen 2030

Schwerpunkt Wärmesektor

Projekt-Zwischenergebnisse Szenarienvergleich

Fragestellungen

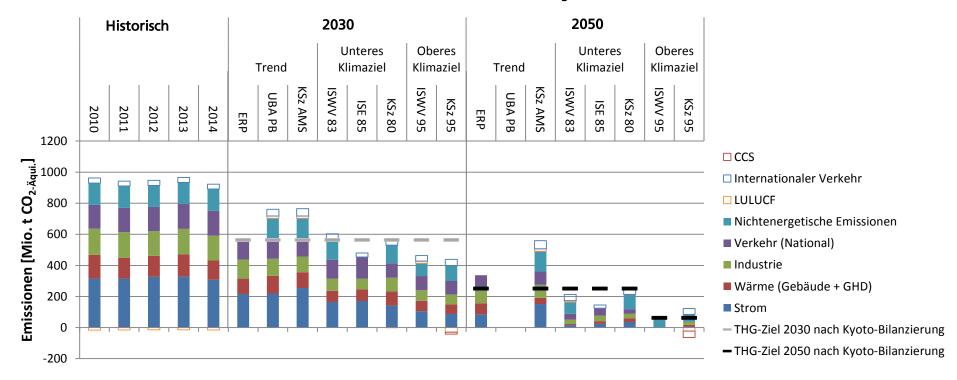
- Hohe politische Relevanz der 2030er Klimaziele (Europa $\leftarrow \rightarrow$ Deutschland)
- Zielszenarien langfristige Klimaziele 2050 einerseits
 - Unteres Klimaziel -80% THG
 - Oberes Klimaziel -95% THG
 - → Identifikation von Schlüsseltechnologien
 - → Entwicklung von heute bis 2030, die es ermöglicht, im Jahr 2050 sowohl ein -80%- als auch ein -95%-Ziel zu erreichen
 - → Mindestniveaus zum Einsatz von Schlüsseltechnologien und Strategien zur Vermeidung von Lock-In-Effekten
- Trendszenarien unter aktuellen Maßnahmen anderseits
 - → Defizite des gegenwärtigen regulatorischen/energiepolitischen Rahmens

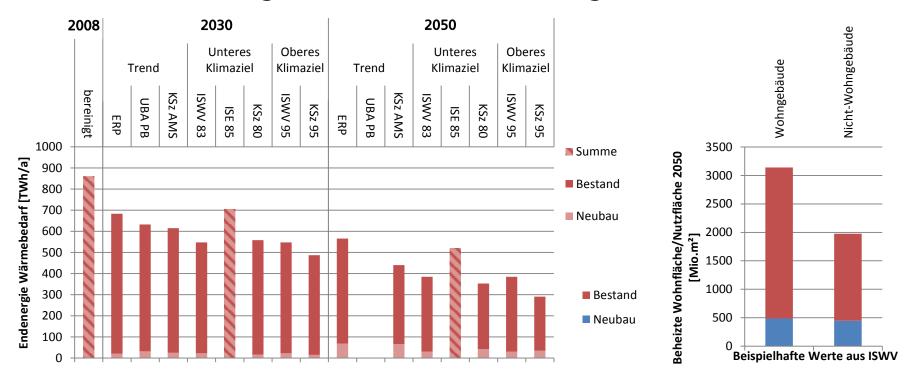
Szenarienvergleich Sektorenkopplung

Ausgewählte Studien mit Fokus Gesamtsystem (und Wärmepumpen)

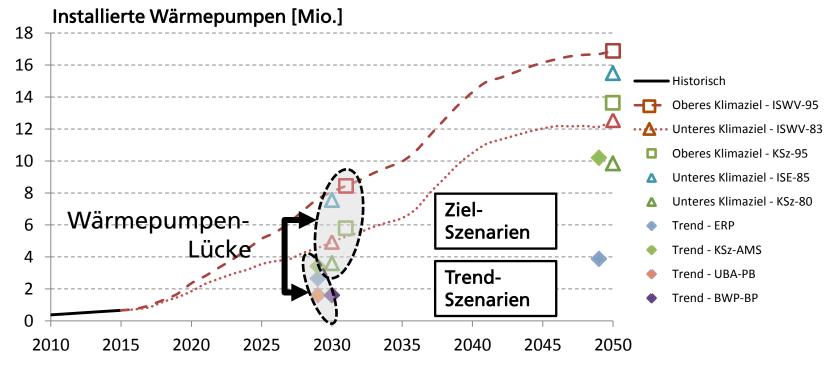
		Heute	2030	2050
Zielszenarien	oberes	BMUB-Klimaschutzszenario (2.Runde) - KSz-95 %		
	Klimaziel	Interaktion EE-Strom-Wärme-Verkehr (Erweiterung) - ISWV-95%		
	unteres Klimaziel	BMUB-Klimaschutzszenario (2.Runde) - KSz-80 %		
		Fh-ISE Was kostet die Energiewende - ISE-85%		
		Interaktion EE-Strom-Wärme-Verkehr (Basis) - ISWV-83%		
Trendszenarien		BMUB-Klimaschutzszenario (2.Runde) - KSz-AMS		
		BMWi-Energiereferenzprognose - ERP		
		UBA-Projek	cionsbericht 2015 - UBA-PB	
		BWP-Branch	enprognose 2016 - BWP-BP	

 Fokus hier: Dekarbonisierung des Wärmesektors, Sektorenkopplung Strom-Wärme und Rückkopplung auf Stromsektor

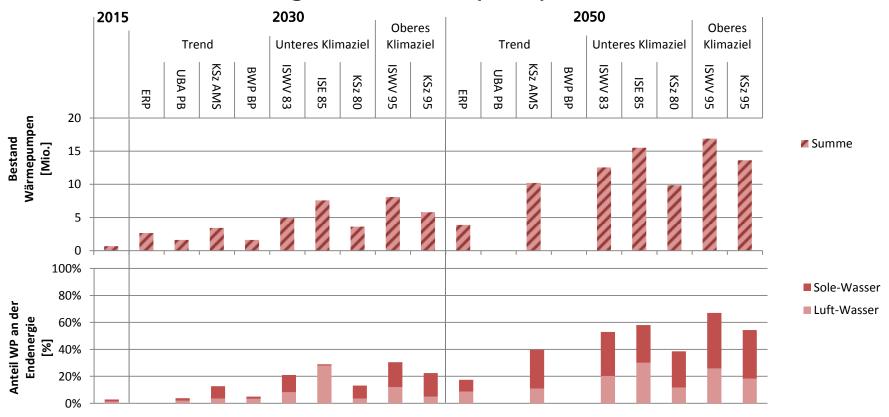



Wie prioritär ist die Dekarbonisierung des Gebäudewärmebereichs aus Gesamtsystemsicht?

- Ziele des Energiekonzeptes
 - 2030er Ziel -55% THG (Kyoto) im Gesamtsystem (gegenüber 1990)
 - 2050er Ziel -80% fossile Brennstoffe im Gebäudewärmebereich (gegenüber 2008)
- → Mit CCS und LULUCF (Landnutzungsänderungen) mehr Freiheitsgrade im Wärmebereich
- → Grundsätzlich müssen Gebäude / Strom stärker dekarbonisiert werden als Verkehr / Industrie

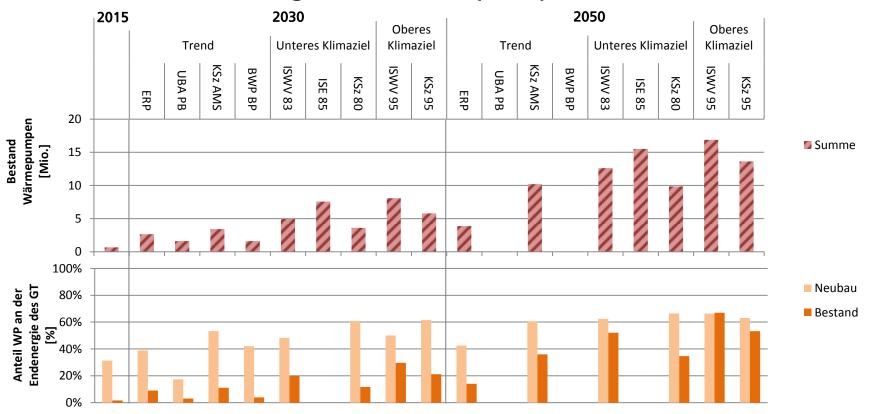

Schlüsseltechnologien - Gebäudesanierung

- Gap-Analyse → große Hemmnisse in Trendszenarien; Zielszenarien weisen Bandbreiten von -40% bis -66% gegenüber 2008 auf.
- Geringer Anteil Neubau (Wirkung EnEV → Primärenergieeinsparung) im Vergleich zu Bestandsgebäuden

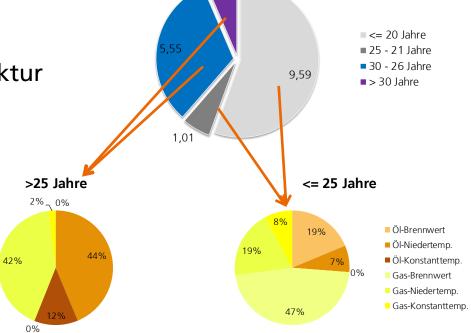


Schlüsseltechnologien - Wärmepumpen

- WP sind einheitliche Schlüsseltechnologie in allen Szenarien
- Gap-Analyse → Unterschiedliche Analysen hinsichtlich der wirtschaftlichen Rahmenbedingungen heute (Trend) und langfristigem Marktanteil


Schlüsseltechnologien - Wärmepumpen

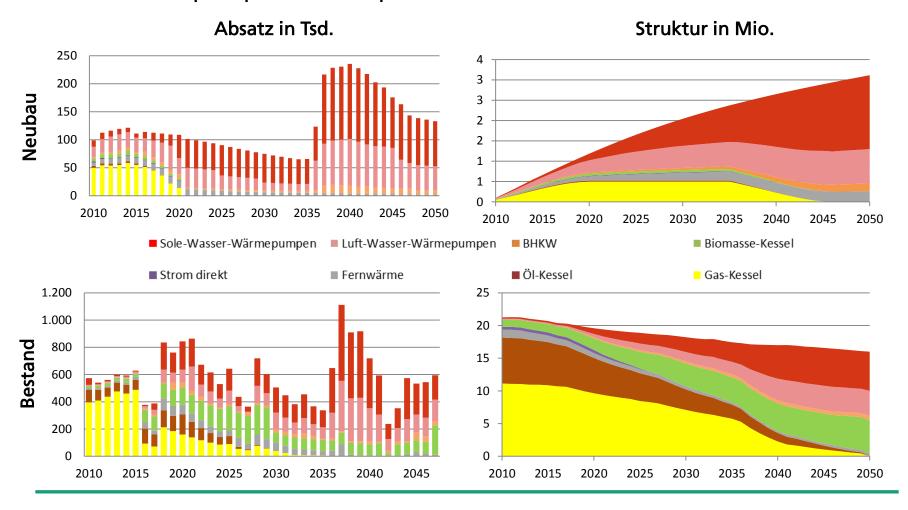
 Unterschiedliche Einschätzung zur Rolle von Luft-Wärmepumpen (Wirtschaftlichkeit vs. Effizienz)



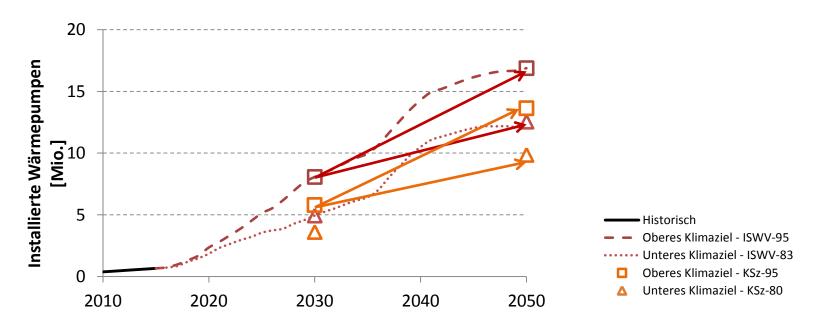
Schlüsseltechnologien - Wärmepumpen

In Neubauten ist mit einer Steigerung der Marktanteile zu rechnen, nicht aber im Gebäudebestand Wie lange kann man warten?

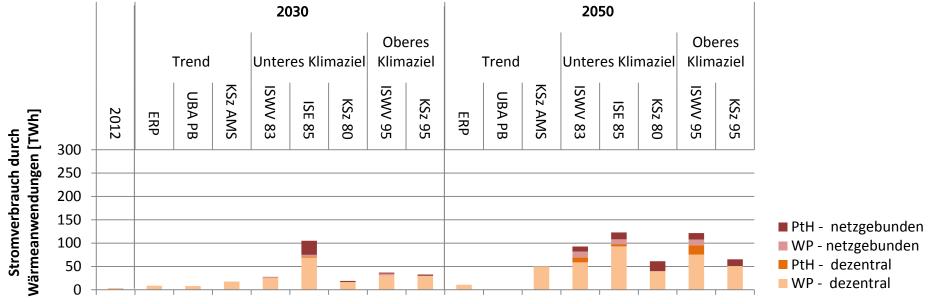
- Hohe Restriktionen durch Altersstruktur
 - Viele Kessel > 30 / 25 Jahre


1,11

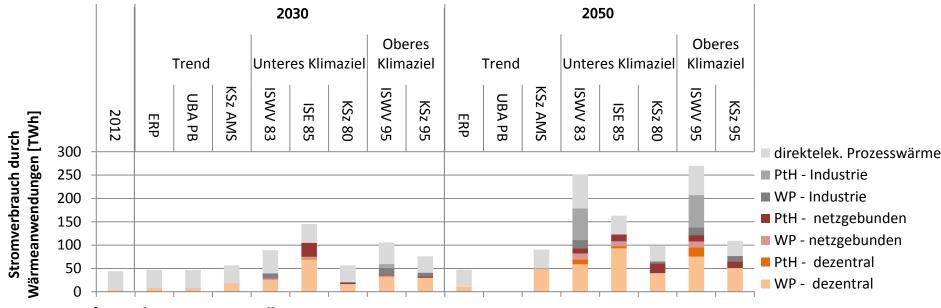
- Heute Pflicht zum Kesselaustausch bei 30 Jahren (laut §10 EnEV)
 → dies würde schon ab 2020 ein radikalen Umbruch des
 Wärmeerzeugerabsatzmarktes bedeuten
- Bei unterstellter Verkürzung auf 25 Jahre (ISWV) dürften, um ein -95%-Ziel nicht auszuschließen, <u>ab 2025</u> keine Gas- und Öl-Kessel mehr verkauft werden


Wie lange kann man warten?

Konsequenzen der Trägheit des Gebäudebereiches für den Absatzmarkt von Wärmepumpen am Beispiel ISWV-83%


Mindestniveau ohne Lock-In-Effekte - Wärmepumpen

Welche Bestandsentwicklung ist bis 2030 notwendig, um -95%-Szenarien nicht auszuschließen?


 Um langfristig hohe Klimaschutzziele (-95% THG aus Sicht des Gesamtsystems) nicht auszuschließen, müssen auch 2030 bereits ambitionierte Ziele gesetzt werden; andernfalls droht eine Zielverfehlung

Schlüsseltechnologien – Stromverbrauch für Wärme

- Höhere Abweichungen in den Bereichen neuer Wärmeanwendungen
- Ausbau Wärmnetze von heute 9% auf 11% bis 23% (teilweise auch schon im Trend)
 - PtH (Elektrodenkessel) sind in Zielszenarien Schlüsseltechnologie, im Trend aber aufgrund von Hemmnissen des regulatorischen Rahmens nicht vorhanden
 - Großwärmepumpen sind als Schlüsseltechnologie in Zielszenarien uneinheitlich in der Bedeutung → Pfadentscheidung Temperaturabsenkung?

Schlüsseltechnologien – Stromverbrauch für Wärme

- Industrieprozesswärme
 - Industrie-Großwärmepumpen sind als Schlüsseltechnologie in Zielszenarien uneinheitlich, für die 95%-Szenarien aber wesentlich
 - Bedeutung neuer elektrischer Verfahren zum Ersatz fossiler Prozesswärme werden sehr uneinheitlich bewertet
- → Rahmenbedingungen, dass der Markt ja nach lokalen Gegebenheiten die kosten- und energieeffizienteste Lösung umsetzen kann

Diskussion weiterer Schlüsseltechnologien

Solarthermie

- Große Bandbreite von 11 bis 81 TWh (auch zwischen den Zielszenarien)
- Teils nur Dachanlagen, teils nur Wärmenetze, teils Dachanlagen +
 Wärmenetze, teils Dachanlagen + Wärmenetze + Industrie
- In Trendszenarien nur Dachanlagen

Tiefengeothermie

- Heute bereits in Kombination mit EEG (München)
- In einigen Szenarien zur Dekarbonisierung der Fernwärme zumindest zu geringen Anteilen berücksichtigt

Biomasse

- Holzkessel (dezentral, Wärmenetze, Industrie) fast immer berücksichtigt
- Industrieeinsatz von Biomasse-CCS, THG-Senke des Waldes (LULUCF)
- Anbaubiomasse (NaWaRo) Bandbereite von Fokus Gas (universal einsetzbar) bis Fokus Kraftstoffe (Verkehr)

Schlussfolgerungen

- Rolle von Strom-Wärme-Anwendungen ist essentiell, um Klimaziele zu erreichen
- Hohe Restriktionen des Wärmemarktes aufgrund von Infrastruktur und Altersstruktur
- "Wärmepumpenlücke" in 2030: Trend liegt bei 2-4 Mio. WP. Um flexibel genug für -80 bis -95% zu bleiben, wären aber 4 bis 8 Mio. nötig. Der momentane Absatzmarkt von ~60.000 WP/a reicht nicht aus.
- Wärmenetze
 - Ermöglichen flexiblere Anpassungen für spätere Dekarbonisierung, aber beschränkter Anteil am Wärmemarkt
 - Mögliche Lock-In-Effekte, wenn keine Temperaturabsenkung und damit keine Einbindung von Großwärmepumpen möglich
- Teilweise starke Erhöhung des Stromverbrauchs und damit des EE-Ausbaus
- 2030-Ziele sollten ambitioniertere -95%-Ziele nicht ausschließen
 Entscheidungen dafür werden schon heute getroffen

Vielen Dank für Ihre Aufmerksamkeit!

Norman Gerhardt Leiter Energiewirtschaft und Systemanalyse

E-Mail: <u>norman.gerhardt@iwes.fraunhofer.de</u>

Tel.: 0561 7294-274 Fraunhofer IWES

Königstor 59 34119 Kassel

