Our most important findings

Key Questions

  1. 1

    There is an emerging consensus that the role of hydrogen for climate neutrality is crucial but secondary to direct electrification.

    By 2050, carbon-free hydrogen or hydrogen-based fuels will supply roughy one fifth of final energy worldwide, with much of the rest supplied by renewable electricity. Everyone agrees that the priority uses for hydrogen are to decarbonise industry, shipping and aviation, and firming a renewable-based power system. Therefore, we should anchor a hydrogen infrastructure around no-regret industrial, port and power system demand.

  2. 2

    Financing renewable hydrogen in no-regret applications requires targeted policy instruments for industry, power, shipping and aviation.

    This is critical for incentivising hydrogen use where carbon pricing alone cannot do the job quickly enough. While policy options are available at a reasonable cost for industry, power and aviation, there is no credible financing strategy for hydrogen use by households. Blending is insufficient to meet EU climate targets and carbon prices high enough to deliver hydrogen heating would be unacceptable for customers.

  3. 3

    Gas distribution grids need to prepare for a disruptive end to their business model, because net-zero scenarios see very limited hydrogen in buildings.

    To stay on track for 1.5C, Europe needs to reduce consumption of natural gas in buildings by 42 percent over the next decade, as per the EU Impact Assessment. Similarly, land-based hydrogen mobility will remain a niche application. Any low-pressure gas distribution grids that survive will be close to ports, where refuelling and storage infrastructure could provide an impetus for the decarbonisation of the maritime and aviation sectors.

  4. 4

    Europe has enough green hydrogen potential to satisfy its demand but needs to manage two challenges: acceptance and location of renewables, as each GW of electrolysis must come with 1-4 GW of additional renewables.

    To keep industry competitive, the EU should therefore access cheap hydrogen (green and near-zero carbon) from its neighbours via pipelines, reducing transport cost. Imports from a global market will focus on renewable hydrogen-based synthetic fuels.

From study : 12 Insights on Hydrogen
  1. 1

    Short-term, well-targeted measures to protect consumers from power price shocks must be consistent with Europe’s transition to a power system based on high shares of renewables.

    Such a fully decarbonised system will be much more decentralised while relying on renewables, flexibility and an active ­demand-side. The EU Commission should initiate a well-prepared debate on necessary further adjustments to EU power market rules during the legislative period that starts in 2024.

  2. 2

    Ramping up renewables and energy efficiency will provide a structural solution to the supply crisis while keeping Europe on track to achieving climate neutrality. A well-­functioning internal electricity market is crucial for the efficient operation of an increasingly renewables-based power system.

    Renewables investment should be ramped up to close the supply gap and reduce Europe’s dependence on fossil fuel imports. Annual onshore wind deployment needs to triple while annual offshore wind and solar PV deployment needs to quadruple by 2030. Marginal ­pricing on wholesale markets will ensure the efficient use of electricity, balance supply through cross-border trade and enable demand-side flexibility and storage.

  3. 3

    Voluntary two-sided contracts for difference (CfDs) should become the standard approach for governments to support renewables investment, alongside merchant approaches such as power purchase agreements (PPAs).

    CfDs can ensure predictable revenue streams from renewable energy projects, thus reducing risks for investors and lowering financing costs. CfDs can also facilitate the market integration of renewables and skimming-off of windfall profits, generating revenues that can be used for targeted support. To quickly scale up renewables deployment, investors should be able to decide whether to use government-backed CfDs or to develop merchant-based renewables projects, e.g. through PPAs.

  4. 4

    The combination of two-sided CfDs, PPAs, and the skimming-off of windfall ­profits in emergency situations will help protect consumers from spiking power prices in the event of future fossil-fuel supply shocks.

    A harmonised EU approach to reducing windfall profits during emergency situations should replace the current inframarginal revenue cap, as the uneven and unpredictable implementation of the revenue cap is scaring off renewables investors. In the medium term, with a growing volume of renewable electricity produced under CfDs and PPAs, windfall profit claw-backs will become less relevant.

  1. 1

    Making Western Balkans’ power systems CO2 free by 2045 is possible and would save money.

    Producing electricity from renewable energy sources and green hydrogen will cost 15 percent less up

    to 2045 than relying on lignite or gas. A full decarbonisation of the region’s power system will require

    a total investment of 43 billion euros over 30 years, 12 billion euros more than the fossil baseline. Even if investments are higher, renewables deployment can largely be financed from market revenues.

  2. 2

    A decarbonised power system ensures security of supply.

    A reliable yet carbon-free power system can be achieved with a combination of renewables, storage (hydro, batteries, thermal storage) and 5 GW of green hydrogen fuelled power plants. Deeper regional integration can further reinforce security of supply.

  3. 3

    Fossil gas is not a bridge fuel.

    The need for more ambitious climate action together with high and volatile fossil gas prices and ever cheaper renewables undermine the business case for new fossil gas infrastructure: any new fossil gas plant risks becoming a “stranded asset”. If the Western Balkan countries invest in hydrogen-ready infrastructure and storage technologies instead, they can reduce cumulative fossil gas demand by 50 percent up to 2045 while cutting overall costs by 12 percent compared to a strategy that bets on fossil gas to replace aging lignite.

  4. 4

    Storage technologies provide flexibility and enable renewables expansion throughout the region.

    Greater energy storage capacity enables rapid growth in PV, the most easily scalable renewables

    technology. Storage also lowers the need for hydrogen power plants that will replace gas plants. It

    is important not to overestimate hydrogen needs when planning for corresponding infrastructure. 5 GW of green hydrogen plants, covering 7 percent of demand in 2045, are needed for power system security of supply.

  1. 1

    The EU will establish a Carbon Border Adjustment Mechanism (CBAM) that will apply to power imported from neighbouring countries, including the Western Balkan region.

    The CBAM is a necessary tool for the EU to prevent carbon leakage; it is not an instrument to force trading partners to adopt similar policies.

  2. 2

    The Western Balkan countries have the EU as their main trading partner. They should prepare for its entry into force by either adopting internal carbon pricing or establishing clear pathways to enter the EU ETS.

    Export markets for goods with high carbon intensity will shrink, impacting the region far beyond the power sector. The CBAM will to some extent also reduce opportunities to export carbon free flexible power generation. There is a tight timeline concerning the numerous re-forms that must take place before 2030.

  3. 3

    Plans for new lignite power plants in the Western Balkans should be halted.

    Such projects will be loss-making in context of the CBAM. Establishing domestic carbon pricing will assist countries in gathering revenues that should be used to fund the transition to clean power systems.

  4. 4

    The EU should commit to use CBAM revenues for technical assistance and transfer of knowledge to countries developing carbon pricing.

    Specific support is needed for establishing the data and technical backbone of carbon pricing systems. In addition, the West-ern Balkan countries should use a larger share of available EU funds for supporting a just transition and socio-economic convergence with the EU.

  1. 1

    Die Treibhausgasemissionen sinken 2020 um gut 80 Mio. t CO2 und liegen damit etwa 42,3 Prozent unter dem Niveau von 1990. Etwa zwei Drittel des Rückgangs ist auf die Corona-Wirtschaftskrise zurückzuführen, Corona-bereinigt lägen die Emissionen bei -37,8 Prozent.

    Corona-bedingt sinken damit die Emissionen unter die 2020-Klimaziel-Marke von -40 Prozent. Hauptursachen für die geringeren Emissionen sind die Wirtschaftskrise (geringe Energienachfrage, gesunkene Industrieproduktion, Einbruch der Verkehrsnachfrage), höhere CO2-Preise im EU-Emissionshandel sowie ein milder Winter.

  2. 2

    Der Anteil Erneuerbarer Energien am Stromverbrauch erreicht 2020 mit 46,2 Prozent einen Höchstwert, zugleich hält die Zubaukrise bei der Windkraft weiter an.

    Im Vorjahr lag der Erneuerbaren-Anteil bei 42,4 Prozent, Corona-bereinigt läge er 2020 bei etwa 44,6 Prozent. Knapp die Hälfte des höheren Erneuerbare-Energien-Anteils 2020 geht damit auf die Corona-bedingt gesunkene Stromnachfrage zurück. Im Jahr 2021 könnte der Erneuerbare-Energien-Anteil aufgrund einer sich erholenden Stromnachfrage und des aktuell unzureichenden Erneuerbaren-Ausbaus erstmals seit etwa 20 Jahren sinken.

  3. 3

    Die Kohle ist weiter im Sinkflug: Braun- und Steinkohle tragen zusammen nur noch 24 Prozent zur Stromerzeugung bei, weniger als die Windkraft (Offshore und Onshore). In den vergangenen fünf Jahren hat sich die Kohleverstromung halbiert.

    Selbst das moderne Kohlekraftwerk Moorburg beteiligte sich erfolgreich an der ersten Stilllegungs-Ausschreibung und geht 2021 nach nur gut fünf Jahren Betrieb vom Netz. Steigende CO2-Preise und niedrige Gaspreise verdrängen nicht nur Steinkohle-Kraftwerke, sondern zunehmend auch Braunkohle-Kraftwerke vom Markt.

  4. 4

    Der Europäische Rat hat im Dezember 2020 das EU-Klimaziel für 2030 auf mindestens -55 Prozent erhöht. Das bedeutet, dass auch Deutschland sein 2030-Ziel erhöhen muss: auf mindestens -65 Prozent.

    Im Jahr 2021 steht daher eine erhebliche Beschleunigung der Klimapolitik an: Auf EU-Ebene wird die EU-Kommission im Juni 2021 ein Paket an Maßnahmen präsentieren. Auch in Deutschland ist in allen Bereichen – Kohleausstieg, Erneuerbare Energien, Gebäudesanierung, Verkehrswende, Industrie, Landwirtschaft – eine klimapolitische Beschleunigung erforderlich, um die 2030-Ziele zu erreichen.

  1. 1

    There is a limited set of applications in all sectors that urgently need renewable hydrogen to become climateneutral.

    These applications include steel, ammonia and basic chemicals production in the industrial sector, as well as long-haul aviation and maritime shipping. The power sector needs long-term storage to accommodate variable renewables, and existing district heating systems may require hydrogen to meet residual heat load. Accordingly, renewable hydrogen needs to be channelled into these no-regret applications.

  2. 2

    Ramping up renewable hydrogen will require extra policy support that is focused on rapid cost reductions.

    While renewable electricity (the main cost component of renewable hydrogen) is already on track to become cheaper, electrolyser system costs also need to be reduced. Cheaper electrolysers will come through economies of scale and learning-by-doing effects; however, predictable and stable hydrogen demand is prerequisite for electrolyser manufacturers to expand production and improve the technology.

  3. 3

    CO₂ prices in the 2020s will not be high enough to deliver stable demand for renewable hydrogen, underscoring the need for a hydrogen policy framework.

    Even at CO₂ prices of €100 to 200/tonne, the EU ETS will not sufficiently incentivise renewable hydrogen production, making additional policy support necessary for a considerable period of time. Among potential policy options, a general usage quota for renewable hydrogen would not be sufficiently targeted to induce adoption in the most important applications.

  4. 4

    A policy framework to ramp up the market for renewable hydrogen should initially target the applications where hydrogen is clearly needed and a no-regret option.

    Several policy instruments should be deployed in concert to achieve this aim – namely, carbon contracts for difference in industry; a quota for aviation; auctions to support combined heat and power plants; measures to encourage markets for decarbonised materials; and hydrogen supply contracts. These instruments will also need to be complemented by regulations that ensure sustainability, appropriate infrastructure investment, system integration, and rapid renewables growth.

  1. 1

    Ein klimaneutrales Deutschland ist bereits bis 2045 möglich. Im Vergleich zum Zieljahr 2050 spart das der Atmosphäre knapp eine Milliarde Tonnen CO₂

    Mit einem solchen Ziel würde Deutschland wieder zu einem internationalen Vorreiter beim Klimaschutz und zu einem Leitmarkt und Leitanbieter für Klimaschutztechnologien.

  2. 2

    Ein Minderungsziel von 65 Prozent bis 2030

    ist als Meilenstein auf dem Weg zur Klimaneutralität 2045 geeignet und schafft die Voraussetzungen für eine beschleunigte Transformation nach 2030.

  3. 3

    Klimaneutralität 2045 bedeutet gegenüber einem Zieljahr 2050 mehr Tempo im Strukturwandel.

    Beim Ausbau der Erneuerbaren Energien (EE), bei der klimaneutralen Industrie und beim Umstieg auf Wärmepumpen und Elektromobilität wird nach 2030 die Transformation beschleunigt. Zudem werden die Agrarwende und der Einsatz von CO₂-Abscheidung und -Speicherung (CCS) vorgezogen.

  1. 1

    A climate-neutral Germany is possible as early as 2045. Compared with the 2050 goal, achieving climate neutrality by 2045 avoids almost one billion tons of CO₂ emissions.

    This would re-establish Germany as an international leader in climate protection and make it a lead market and technology provider for climate-friendly technologies.

  2. 2
  3. 3

    Climate neutrality by 2045 means more rapid structural transformation:

    After 2030, the transformation would have to accelerate with regard to renewable energy expansion, industrial decarbonisation, and the adoption of heat pumps and electric vehicles. The transformation of the agricultural sector and the use of carbon capture and storage (CCS) technologies will have to occur sooner.

  1. 1

    The pandemic triggered an unprecedented economic contraction in the first quarter of 2020, the first time China has experienced a decline in national output in over four decades.

    Following a drastic slump of 6.8 per cent YOY in Q1, the Chinese economy rebounded with 3.2 per cent YOY growth in Q2. China is projected to be the only major economy to see positive growth in 2020.

  2. 2

    COVID-19-induced climate and environmental benefits will be short-lived.

    Because of the coal-intensive economic recovery in Q2 2020, China’s carbon emissions and air pollution have already returned to pre-crisis levels. Structural changes and a green stimulus package are urgently needed to steer China’s economic recovery in a more environmentally sustainable direction.

  3. 3

    The National Bureau of Statistics should consider readjusting China’s energy statistical reporting in the near future, especially with regard to coal-related data.

    Because of coal’s dominance in China’s primary energy mix and the uncertainty associated with the country’s statistical reporting on coal in recent years, it is important to focus attention on tracking the changes and trends in China’s economic activity and energy consumption instead of on the absolute numbers provided in our COVID-19 China Energy Impact Tracker reports.

  1. 1

    Chinese President Xi Jinping’s pledge on September 22 that the country would reach peak national carbon emissions before 2030 and achieve carbon neutrality before 2060 sent positive shock waves through the climate policy world.

    As both current and future Chinese administrations will need to take President Xi’s climate pledge seriously, the announcement is expected to make a real difference in China’s energy transition, especially in the long run.

  2. 2

    Clean energy and climate targets set for the 14th Five Year Plan (FYP) period between 2021 and 2025 are expected to be more ambitious than would otherwise be the case in the absence of a carbon neutrality pledge.

    The Chinese energy policy community’s recent revisions to draft 14th FYPs for energy and climate indicate that the impacts are likely to be not only positive but also substantial.

  3. 3

    The short-lived COVID-induced climate benefits call for greener 14th FYPs for energy and climate.

    China’s monthly carbon emissions have exceeded pre-crisis levels. Greener 14th FYPs for energy and climate are urgently needed to steer the Chinese energy economy in a more sustainable direction.

  1. 1

    China’s carbon neutrality pledge sent positive shock waves through the international climate community and has boosted its clean-energy transition efforts.

    It remains to be seen how China will balance its short-term interest in economic stimulus through carbon-intensive investment with its medium-to-long-term interest in peaking national emissions as soon as possible.

  2. 2

    All forms of energy demand, including coal, grew last year, which does not bode well for China’s ambitious international climate commitment.

    While the rest of the world experienced economic contraction in 2020, China’s economy grew, increasing its share of global carbon emissions by two percentage points. China must urgently downsize its gigantic national coal consumption, which makes up more than half of the global total.

  3. 3

    While the COVID-19 economic contraction in China is likely to be short-lived, the pandemic’s profound impact on China’s energy sector and global geopolitics is expected to be felt for many years to come.

    In the post-COVID-19 world, China is likely to face a much more contentious geopolitical environment. Beijing could stabilize its role in the world by becoming a leader in the global transition to clean energy.

  1. 1

    Hard-to-abate industrial sectors represent a major area of hydrogen demand in the future due to a lack of alternative decarbonization options.

    Steel, ammonia, refineries and chemical plants are widely distributed across Europe. To reduce and eventually eliminate their process emissions, 300 TWh of low-carbon hydrogen are required. This number does not factor in the production of high-temperature heat, for which direct electri-fication should be considered first.

  2. 2

    The investment window for fossil-based hydrogen with carbon capture remains open, but in the long run renewable hydrogen will emerge as the most competitive option across Europe.

    Given the current asset lifecycle and political commitments, fossil-based hydrogen with carbon capture will remain a viable investment until the 2030s, but strong policies for renewable hydro-gen will shorten the investment window for fossil hydrogen, likely closing it by the end of the 2020s.

  3. 3

    We identify robust no-regret corridors for early hydrogen pipelines based on industrial demand.

    Adding potential hydrogen demand from power, aviation and shipping sectors is likely to strengthen the case for an even more expansive network of hydrogen pipelines. However, even under the most optimistic scenarios, any future hydrogen network will be smaller than the cur-rent natural gas network. A no-regrets vision for hydrogen infrastructure needs to reduce the risk of oversizing by focusing on indispensable demand, robust green hydrogen corridors and storage.

  4. 4

    Hard-to-abate industrial sectors represent a major area of hydrogen demand in the future due to a lack of alternative decarbonization options.

    Steel, ammonia, refineries and chemical plants are widely distributed across Europe. To reduce and eventually eliminate their process emissions, 300 TWh of low-carbon hydrogen are required. This number does not factor in the production of high-temperature heat, for which direct electrification should be considered first.

  5. 5

    The investment window for fossil-based hydrogen with carbon capture remains open, but in the long run renewable hydrogen will emerge as the most competitive option across Europe.

    Given the current asset lifecycle and political commitments, fossil-based hydrogen with carbon capture will remain a viable investment until the 2030s, but strong policies for renewable hydrogen will shorten the investment window for fossil hydrogen, likely closing it by the end of the 2020s.

  6. 6

    We identify robust no-regret corridors for early hydrogen pipelines based on industrial demand.

    Adding potential hydrogen demand from power, aviation and shipping sectors is likely to strengthen the case for an even more expansive network of hydrogen pipelines. However, even under the most optimistic scenarios, any future hydrogen network will be smaller than the current natural gas network. A no-regret vision for hydrogen infrastructure needs to reduce the risk of oversizing by focusing on indispensable demand, robust green hydrogen corridors and storage.

From study : No-regret hydrogen
  1. 1

    The EU’s 1.85-trillion-euro budget proposal pretends to be green, but it is not.

    It is uncertain whether the 750 billion NextGen EU recovery budget will be used for clean investment; and only a very limited part of the 1.1-trillion Multiannual Financial Framework is reserved to that end. The proposal fails to meet the stated commitment of the European Commission and Europe’s heads of state to an economic recovery in line with climate neu-trality by 2050.

  2. 2

    The 1.85 trillion euros must help Europe reach the proposed increases to its 2030 climate targets – amounting to a 50 or 55% reduction of carbon emissions – by ramping up massive clean in-vestment in the buildings, power, transport and industry sectors.

    Priorities are tripling the speed for creating new solar and wind energy, tripling the rate of energy efficiency retrofits of building, greening district heating networks, an EU-wide EV-charging infrastructure, a high-speed EU railway system, a clean hydrogen economy and a climate-neutral industry.

  3. 3

    Three climate safeguards can ensure that the future EU Budget is really green:

    (1) Stipulating a climate share of 40% across all budget lines in both the NextGen EU budget and the multiannual financial framework; (2) establishing dedicated EU facilities to accelerate climate action in critical areas; (3) setting out a clear exclusion-list of climate-negative activi-ties that will not be eligible for EU funding.

  4. 4

    Europe must develop budget governance mechanisms that combine flexibility with climate integrity.

    We need (1) to ensure that spending activities are consistent with the National Energy and Climate Plans, the Territorial Just Transition Plans, the Recovery and Resilience Plans, and other planning processes; (2) to devise a role for the EU Green Taxonomy in determining na-tional spending priorities; and (3) to conduct a budget review in early 2024, when EU legisla-tors will have just finished updating the EU’s 2030 climate and energy framework.

From study : Recovering Better!
  1. 1

    Ein klimaneutrales Deutschland 2050 ist technisch und wirtschaftlich im Rahmen der normalen Investitionszyklen in drei Schritten realisierbar.

    In einem ersten Schritt sinken die Emissionen bis 2030 um 65 Prozent. Der zweite Schritt nach 2030 ist der vollständige Umstieg auf klimaneutrale Technologien, sodass die Emissionen um 95 Prozent sinken. In einem dritten Schritt werden nicht vermeidbare Restemissionen durch CO2-Abscheidung und -Ablagerung ausgeglichen.

  2. 2

    Der Weg in die Klimaneutralität ist ein umfassendes Investitionsprogramm, vergleichbar mit dem Wirtschaftswunder in den 1950er/60er-Jahren.

    Kernelemente sind eine Energiewirtschaft auf Basis Erneuerbarer Energien, die weitgehende Elektrifizierung, die smarte und effiziente Modernisierung des Gebäudebestands sowie der Aufbau einer Wasserstoffwirtschaft für die Industrie. Dies steigert zugleich die Lebensqualität durch weniger Lärm und Luftschadstoffe.

  3. 3

    Das als Teil des European Green Deal angepasste deutsche 2030-Klimaziel von minus 65 Prozent Treibhausgase bedeutet eine deutliche Beschleunigung der Energie-, Verkehrs- und Wärmewende.

    Dazu gehören bis 2030 der vollständige Kohleausstieg, ein Erneuerbaren-Anteil am Strom von etwa 70 Prozent, 14 Millionen Elektroautos, 6 Millionen Wärmepumpen, eine Erhöhung der Sanierungsrate um mindestens 50 Prozent sowie die Nutzung von gut 60 TWh sauberen Wasserstoffs.

  4. 4

    Die Weichen für Klimaneutralität 2050 und minus 65 Prozent Treibhausgase bis 2030 werden in der nächsten Legislaturperiode gestellt.

    Das Regierungsprogramm nach der Bundestagswahl 2021 ist von zentraler Bedeutung. Kluge Instrumente und Politiken modernisieren Wirtschaft und Gesellschaft Deutschlands in Richtung Resilienz und Zukunftsfähigkeit. Gleichzeitig gestaltet gute Politik den anstehenden Strukturwandel so, dass er inklusiv ist und alle mitnimmt.

  1. 1

    Germany can achieve climate neutrality by 2050 in three steps while adhering to existing investment cycles.

    The first step consists of a 65% reduction in emissions by 2030. The second step is the complete transition to climate-neutral technologies, for a total emissions reduction of 95%. The third step is the offsetting of residual emissions through carbon capture and storage.

  2. 2

    The path to climate neutrality involves a comprehensive investment programme comparable in scope to the German economic miracle of the 1950s and 60s.

    The core elements of the programme are the creation of a renewable-based energy sector, mass electrification, a smart and efficient modernization of buildings and the development of a hydrogen economy for the industrial sector. Besides achieving climate neutrality, the programme will also improve people’s quality of life by reducing noise and air pollution.

  3. 3

    An enhanced German reduction target of 65% for 2030, in line with the requirements of the European Green Deal, will require significantly accelerating the green transition in the energy, transport and heating sectors.

    This includes the complete phase-out of coal by 2030, a 70% share of renewables in electricity generation, 14 million electric cars on the road, 6 million heat pumps, an increase in the green retrofit rate of at least 50% and the use of some 60 TWh of clean hydrogen.

  4. 4

    The next legislative period will determine how Germany goes about achieving climate neutrality by 2050 and a 65% reduction in GHG emissions by 2030.

    Government action after the 2021 federal election will be pivotal for future climate policy. Intelligent policy instruments will be needed to modernise Germany’s economy and make it sustainable and resilient. They will also be needed to ensure that the structural changes are as fair and inclusive as possible.

  1. 1

    Die EEG-Umlage wird 2021 von 6,8 Cent je Kilowattstunde auf ein Rekordhoch von etwa 8,6 Cent steigen, sofern der Gesetzgeber die Einnahmen aus dem höheren CO2-Preis nach dem novellierten Brennstoffemissionshandelsgesetz nicht zügig auf das EEG-Konto weiterleitet.

    Die Hauptursache für den Anstieg bei der EEG-Umlage ist ein gesunkener Börsenstrompreise infolge des Preisverfalls bei Erdgas (+1,1 Cent) sowie des Einbruchs der Stromnachfrage durch die Corona-Krise (+0,7 Cent).

  2. 2

    Die Einnahmen aus dem erhöhten CO2-Preis von 25 Euro pro Tonne ab 2021 können den Anstieg der EEG-Umlage 2021 auf 7,1 Cent je Kilowattstunde begrenzen.

    Das Bundeskabinett hat jüngst vorgeschlagen, den von 2021 an geltenden CO2-Preis auf Benzin, Diesel, Heizöl und Erdgas von 10 auf 25 Euro je Tonne zu erhöhen. Werden die Mehreinnahmen entsprechend der Bund-Länder-Einigung im Vermittlungsausschuss vom Dezember 2019 komplett zur Senkung der EEG-Umlage eingesetzt, wird dadurch der Anstieg der Umlage um etwa 1,5 Cent pro Kilowattstunde gedämpft. Die eigentlich beabsichtigte Senkung der EEG-Umlage kann aber aufgrund der Corona-Effekte nicht erreicht werden.

  3. 3

    Im Rahmen des geplanten Corona-Konjunkturprogramms sollte die EEG-Umlage einen Zuschuss von 5 Cent je Kilowattstunde aus dem Bundeshaushalt erhalten – und so im Jahr 2021 auf 3,6 Cent je Kilowattstunde halbiert werden

    Diese Finanzspritze von rund 12 Milliarden Euro zuzüglich 1 Milliarde Mehrwertsteuer im Zuge eines Corona-Wachstumspakets würde kurzfristig die Stromrechnung entlasten und Kaufkraft in gleicher Größenordnung stärken. Sie könnte ab 2022 sukzessive durch die steigenden Einnahmen aus der CO2-Bepreisung abgelöst werden. Bei einer nochmaligen Erhöhung des CO2-Preises wäre sogar die komplette Abschaffung der EEG-Umlage denkbar – angesichts aktuell sehr niedriger Öl- und Gaspreise eine historische Chance.

  1. 1

    Der anhaltende Einbruch beim Neubau von Windkraftanlagen gefährdet den Standort Deutschland.

    Für 2021 droht sogar ein Rückgang der installierten Leistung. Dies gefährdet die Wirtschaft, denn ohne deutlich mehr günstigen Windstrom steigt der Börsenstrompreis in den nächsten Jahren deutlich an. Dies gilt erst recht angesichts erwartbar steigender CO₂-Preise im Zuge der Umsetzung des höheren EU-2030-Klimaziels.

  2. 2

    Deutschland braucht schnellstmöglich wieder einen jährlichen Zubau von mehr als 5 Gigawatt Windkraft an Land.

    Das 2017 erreichte Zubauniveau ist dauerhaft nötig. Denn bis 2030 müssen die Erneuerbaren nicht nur die Kohle ersetzen, sondern auch den zusätzlichen Strombedarf im Zuge der Sektorenkopplung decken. Der im EEG-Entwurf vorgesehene Ausbau, der zudem erst 2028 wirklich steigen soll, geht an der Realität vorbei.

  3. 3

    Im Zuge der EEG-Novelle 2021 ist ein umfassendes „Sofortprogramm Windenergie“ nötig.

    Es umfasst eine Erhöhung der Ausschreibungsmengen, Maßnahmen zur kurzfristigen Bereitstellung

    zusätzlicher Flächen, Regelungen für Weiterbetrieb und Repowering von EE-Altanlagen, eine vereinfachte Planungsmethodik sowie erste Schritte hin zu einem modifizierten Artenschutzregime.

  4. 4

    In der nächsten Legislaturperiode muss ein „Masterplan Windenergie an Land“ den Zielkonflikt um Abstandsregeln und Naturschutz grundsätzlich und dauerhaft befrieden.

    Klimaneutralität ist Deutschlands Beitrag zum Erhalt einer intakten Natur. Um sie zu erreichen, braucht es Windkraft an Land mit einer Leistung von etwa 130 Gigawatt bis spätestens 2050.

  1. 1

    Weil der Ausbau der Windenergie an Land aktuell kollabiert, droht eine große Ökostromlücke: Erneuerbare Energien decken 2030 bei Fortschreibung der aktuellen Trends nur etwa 55 Prozent des Strombedarfs.

    Hierbei wurde bereits unterstellt, dass die Solarenergie weiterhin mit vier Gigawatt pro Jahr und Offshore-Windenergie auf 20 Gigawatt bis 2030 zugebaut wird. Das 65-Prozent-Erneuerbaren-Ziel für 2030 rückt so in weite Ferne.

  2. 2

    Weniger Ökostrom und mehr Strom aus fossilen Energieträgern führen zu höheren Industriestrompreisen und höheren CO₂-Emissionen.

    Bei nur 55 Prozent Erneuerbaren-Anteil steigen die Börsenstrompreise im Jahr 2030 um etwa 5 bis 10 Euro je Megawattstunde und die Emissionen um etwa 5 bis 20 Millionen Tonnen CO₂.

  3. 3

    Um die Ökostromlücke zu schließen, muss die Offshore-Windkraftleistung bis 2030 auf mindestens ­ 25 Gigawatt steigen, Onshore-Windkraft wieder um mindestens 4 Gigawatt pro Jahr zugebaut und/oder eine Solaroffensive auf 10 Gigawatt pro Jahr gestartet werden.

    Bei gleichbleibendem Stromverbrauch sind für das 65-Prozent-Ziel zwei der drei genannten Zubaupfade für Offshore-Windkraft, Onshore-Windkraft und Solarenergie nötig. Geht man für 2030 von einem höheren Stromverbrauch aus – wegen zunehmender Elektromobilität, mehr Wärmepumpen, Wasserstoffgewinnung und zusätzlichem Ökostrombedarf in der energieintensiven Industrie –, müssen alle drei Maßnahmen umgesetzt werden.

  4. 4

    Die Zubaukrise der Windenergie muss rasch politisch gelöst werden, andernfalls droht auch der Energiewende insgesamt schwerer Schaden.

    Hierzu gehört ein Maßnahmenpaket, das durch geeignete und einheitliche Planungsverfahren für ausreichend Flächen zur Errichtung von Windenergie an Land sorgt und Genehmigungsverfahren beschleunigt. Auch bei Offshore-Windkraft müssen jetzt rasch die Weichen für höhere Zubaumengen bis 2030 gestellt werden.

  1. 1

    In 2019 greenhouse gas emissions in Germany fell by over 50 million tonnes of CO2 thanks to a sharp drop in lignite and hard coal generation which are now around 35% lower than in 1990.

    Meanwhile, CO2 emissions from the buildings and transport sectors have risen due to an increase in oil and gas consumption. The decline in CO2 emissions can be attributed to the higher CO2 prices in the EU ETS, a significant increase in renewable generation and lower electricity consumption. The rising share of SUVs in the transport sector is responsible for rising emissions.

  2. 2

    Renewable energy broke a new record, reaching almost 43 percent of electricity consumption. Unfortunately, the collapse in wind capacity expansions to just one gigawatt per year means the energy transition is entering the 2020s with a heavy burden.

    Whilst annual growth in renewables has been consistently in the 15 terawatt hours in recent years, the lack of available space and permits for wind capacity puts its continuation in jeopardy. Decisive political action is now required if the 2030 renewable energy targets are to be achieved.

  3. 3

    When it comes to the costs of renewable energy, the peak is in sight: the EEG levy will rise again in 2020 to 6.77 cents per kilowatt hour, but is expected to fall in 2022 at the latest, thanks to the lower costs of renewable energy.

    Older, more expensive power plants will then increasingly fall out of the support scheme. In addition, from 2021, part of the revenue from the Fuel Emission Trading Act (BEHG) will be used to reduce the EEG levy. As a result, the price of electricity is likely to fall slightly in the 2020s rather than rise.

  4. 4

    Surveys have shown that climate protection and the energy transition are the number one concern amongst German society in 2019, far ahead of immigration and pensions. This fact is not reflected in the country’s climate politics.

    Indeed, the climate package adopted by the German government in September is not sufficient to achieve the 2030 climate protection targets. There is a considerable need for improvement, particularly in the areas of transport, buildings and industry.

  1. 1

    Die Treibhausgasemissionen in Deutschland sinken 2019 aufgrund eines starken Rückgangs bei Braun- und Steinkohle um über 50 Millionen Tonnen CO2 und liegen damit etwa 35 Prozent unter dem Niveau von 1990.

    Demgegenüber sind die CO2-Emissionen bei Gebäuden und im Verkehr durch mehr Erdöl- und Erdgasverbrauch angestiegen. Hauptursache des CO2-Rückgangs sind höhere CO2-Preise im EU-Emissionshandel, ein deutlicher Zuwachs bei den Erneuerbaren und ein gesunkener Stromverbrauch. Im Verkehr sorgte der steigende Anteil an SUVs für einen Anstieg der Emissionen.

  2. 2

    Die Erneuerbaren Energien liefern 2019 mit knapp 43 Prozent des Stromverbrauchs einen neuen Rekord - aber aufgrund des Zusammenbruchs beim Windausbau auf nur noch ein Gigawatt pro Jahr startet die Energiewende in die 2020er mit einer schweren Hypothek.

    Während die Erneuerbaren in den letzten Jahren kontinuierlich um 15 Terawattstunden pro Jahr anwuchsen, wird der Mangel an Windflächen und -genehmigungen den weiteren Aufwuchs spürbar bremsen. Schnelles politisches Handeln ist jetzt gefragt, um die Erneuerbaren-Ziele für 2030 tatsächlich zu erreichen.

  3. 3

    Bei den Kosten der Erneuerbaren Energien ist der Scheitelpunkt in Sicht: Die EEG-Umlage steigt zwar 2020 nochmal auf 6,77 Cent je Kilowattstunde, aber spätestens ab 2022 zeigen sich die gesunkenen Kosten der Erneuerbaren Energien auch in einer sinkenden EEG-Umlage.

    Ältere, teure Anlagen fallen dann zunehmend aus der Förderung. Zudem soll ab 2021 ein Teil der Einnahmen aus dem Brennstoffemissionshandelsgesetz zur Senkung der EEG-Umlage verwendet werden. Der Strompreis dürfte in der Folge in den 2020ern nicht mehr steigen, sondern leicht fallen.

  4. 4

    Für die Bevölkerung war 2019 "Klimaschutz/Energiewende" das Top-Thema bei der Frage nach den wichtigsten Problemen - deutlich vor "Migration/Integration" (Platz 2) und "Renten" (Platz 3). Die Klima- und Energiepolitik hat dies jedoch nicht abgebildet.

    So reicht das im September von der Bundesregierung beschlossene Klimapaket nicht aus, um die 2030er-Klimaschutzziele zu erreichen. Insbesondere bei Verkehr, Gebäude und Industrie besteht erheblicher Nachbesserungsbedarf.

  1. 1

    Im Jahr 2019 entscheidet sich, ob Deutschland seine Klimaziele 2021–2030 erreicht oder verfehlt.

    Denn während im Trend der letzten Jahre die Treibhausgasemissionen nur um 10 Mio. t CO2e pro Jahr gesunken sind, ist von 2021 bis 2030 eine jährliche Minderung um 25 Mio. t CO2e gefordert. Verfehlt Deutschland seine jährlichen Klimaziele, kommen auf den Bundeshaushalt nach Europarecht Kosten von 30 bis 60 Milliarden Euro zu, um anderen EU-Staaten ihre CO2-Minderungen abzukaufen.

  2. 2

    Kluge Klimapolitik gelingt durch einen Instrumentenmix, der CO2-Minderung, Wirtschaftspolitik und sozialen Ausgleich miteinander in Einklang bringt.

    Dies führt zu einer Kombination aus CO2-Bepreisung, Markteinführungsprogrammen, Anreizsystemen, Ordnungsrecht und Initiativen zur Änderung europäischer Regelwerke. Die Bundesregierung muss daher 2019 ein umfangreiches Gesetzespaket auf den Weg bringen, soll das 2030-Klimaziel erreicht werden.

  3. 3

    Mit einem Paket aus 15 Instrumenten ist es möglich, der 2030-Klimaherausforderung zu begegnen.

    In Energiewirtschaft und Industrie geht es neben der rechtlichen Umsetzung des Kohleausstiegs darum, Investitionssicherheit für Klimatechnologien zu schaffen, u. a. durch eine Novelle des Erneuerbare-Energien-Gesetzes, die Förderung grüner Fernwärme, eine Quote für grünen Wasserstoff und Markteinführungsprogramme für klimaneutrale Technologien in der Industrie.

  4. 4

    Um die Emissionen in Verkehr und Gebäuden zu senken, sind jetzt neue Instrumente gefragt.

    Hierzu gehören ein Bonus-Malus-System beim Autokauf, eine Reform der Lkw-Maut, die steuerliche Förderung der Gebäudesanierung und effektive Energiestandards für Neubauten und Sanierungen. Ergänzt wird dies durch einen CO2-Aufschlag auf die Energiesteuern mit kompletter Rückverteilung der Einnahmen, u. a. über eine 100-Euro-pro-Kopf-Klimaprämie und eine Senkung der Stromsteuer.

  1. 1

    Wind, Sonne und Co. erzeugen 2018 erstmals so viel Strom wie die Kohle: Die Erneuerbaren liefern 38,2 Prozent des Stromverbrauchs und damit gleich viel wie Stein- und Braunkohle zusammen.

    Möglich wurde dies durch ein starkes Solarjahr bei Zubau und Erzeugung. Auch der Windstrom legte zu, wenn auch deutlich weniger als in den Vorjahren, während die Wasserkraft aufgrund der Dürre zurückging. Für die kommenden Jahre ist ein deutlich höherer EE-Zubau notwendig, verbunden mit einer proaktiven Sektorkopplung, um die 2030-Energiewende-Ziele in allen Sektoren umzusetzen.

  2. 2

    Die CO2-Emissionen Deutschlands sinken 2018 deutlich um über 50 Millionen Tonnen, könnten 2019 aber schnell wieder steigen.

    Denn die Ursache für den Rückgang war weniger Klimaschutz, als vielmehr ein stark gesunkener Energieverbrauch auf das Niveau von 1970. Die wesentlichen Faktoren hierfür waren die milde Witterung im Winter und der damit verbundene niedrigere Heizbedarf, ein leicht gesunkenes Produktionsniveau bei Teilen der energieintensiven Industrien sowie zeitweilig stark gestiegene Ölpreise.

  3. 3

    Die Steinkohle verabschiedet sich aus dem Energiemix Deutschlands: Sie fällt auf ihr niedrigstes Niveau seit 1949 und liefert nur noch zehn Prozent des Primärenergieverbrauchs.

    Damit geht im Jahr 2018 nicht nur die Ära der Steinkohleförderung zu Ende, auch ihr Nutzungsende in der Stromversorgung ist absehbar. Anders bei der Braunkohle, die fast unverändert 22,5 Prozent der deutschen Stromerzeugung deckte. Die Kohlekommission, die im Februar 2019 ihre Empfehlungen abgeben soll, wird daher vor allem für die Braunkohle klare Regelungen vorschlagen müssen.

  4. 4

    Der CO2-Preis hat 2018 mit knapp 15 Euro pro Tonne im Jahresmittel das höchste Niveau der letzten zehn Jahre erreicht, die 2018 beschlossene Reform des EU-Emissionshandels zeigt damit erste Wirkungen.

    So ist der Rückgang der Steinkohle im Stromsektor vor allem auf die höheren CO2-Preise zurückzuführen. Auch haben die durch die gestiegenen CO2-Preise erhöhten Börsenstrompreise erste Kaufverträge für Strom aus Windanlagen außerhalb des EEG-Regimes möglich gemacht. Dies zeigt, dass eine stärkere Bepreisung von CO2 deutliche Klimaschutzeffekte am Markt auslösen kann.

  1. 1

    Renewables will provide 50% of SEE power demand in 2030. The European energy transition is underway.

    By 2030, renewables will account for 55% of power generation in Europe, and 50% of power generation in SEE. Nearly 70% of renewable power in SEE will stem from wind and solar, given the excellent resource potential of these renewables in the region.

  2. 2

    Cross-border power system integration will minimise flexibility needs. Wind and solar pose challenges for power systems due to their variable generation. But weather patterns differ across countries.

    For example, wind generation can fluctuate from one hour to the next by up to 47% in Romania, whereas the comparable figure for Europe is just 6%. Moving from national to regional balancing substantially lowers national flexibility needs. Increased cross-border interconnections and regional cooperation are thus essential for integrating higher levels of wind and PV generation.

  3. 3

    Conventional power plants will need to operate in a flexible manner. For economic reasons, hard coal and lignite will provide less than 25% of SEE power demand by 2030.

    Accordingly, conventional power plants will need to flexibly mirror renewables generation: When renewables output is high, conventionals produce less, and when renewables output is low, fossil power plants increase production. Flexible operations will become an important aspect of power plant business models.

  4. 4

    Security of supply in SEE power systems with 50% RES is ensured by a mix of conventional power plants and cross-border cooperation.

    The available reserve capacity margin in SEE will remain above 35% in 2030. More interconnectors, market integration and regional cooperation will be key factors for maximising national security of supply and minimising power system costs. SEE can be an important player in European power markets by providing flexibility services to CEE in years of high hydro availability.

  1. 1

    From 2019, a “Lusatia Structural Change Fund” should be established within Germany’s federal budget.

    The aim of the fund would be to strengthen the region’s economic attractiveness and its desirability as a place to live. It should help to: preserve the region’s industrial character, strengthen innovation among its businesses, support its academic institutions, equip it with an up-to-date transport network and digital infrastructure, and foster a lively civil society that retains local residents while also attracting new ones.

  2. 2

    The Lusatia Fund should be endowed with 100 million euros per year for 15 years, to be divided equally between four key pillars: business development, academia, infrastructure, and civil society.

    In each of these areas, it should be possible to use the available funds in a flexible manner (i.e. to shift funding between areas), and funds that are not withdrawn should not expire (i.e. funding should be transferable to subsequent years).

  3. 3

    Regional stakeholders from the spheres of business, academia, politics, and civil society should play a key role in awarding of funds.

    The federal government should only play a monitoring and coordinating role, as part of a steering committee; decisions on funding priorities should be made by stakeholders from the region.

  4. 4

    The funds assigned to the civil society pillar should be administered by a new “Lusatia Future Foundation.”

    Raising the attractiveness of a region means more than just promoting its economy, academic institutions and infrastructure. Ultimately, the vibrancy of a place depends on art, culture, lived traditions and the quality of civil society. These factors require ongoing support, which can be guaranteed in the short term through the Structural Change Fund and in the long term through developing a foundation with a strong endowment.

From study : A Future for Lusatia
  1. 1

    The sustainable energy transition in the heating sector is currently lagging and buildings sector goals are unlikely to be met by 2030.

    Reducing emissions from the current level of 130 million tons of CO2 to between 70 and 72 million tons in the next 11 years will require ramping up all available technologies across the board. These include insulation, heat pumps, heat networks, decentralized renewable energy and power-to-gas. Cherry-picking the various building technologies is no longer an option because of past shortcomings.

  2. 2

    Energy efficiency in existing buildings is a prerequisite for technology neutrality.

    Ensuring adequate competition between various energy supply options such as renewable energy, heat pumps, synthetic fuels and decarbonized heat networks requires reducing final energy consumption by at least a third before 2050. The more efficient a building is, the more realistic any necessary expansion on the generation side will be.

  3. 3

    Power-to-gas can only complement aggressive efficiency policies in the buildings sector, not replace them.

    Synthetic fuels are a significant component of energy supply in all 2050 climate protection scenarios. But their contribution by 2030 is only limited, and even between 2030 and 2050 they are considerably more expensive than most energy efficiency measures in the buildings sector. In addition, the bulk of generation from power-to-gas may be allocated to other markets (industrial processes, shipping, air travel and transport by truck).

  4. 4

    To successfully implement the heating transition, we urgently need a roadmap for promoting energy efficiency in buildings by 2030.

    To this end, a package of policy measures is needed, including changes to relevant laws, regulations and energy tax laws, as well as an overhaul of funding programs. The heating sector goals for 2030 and 2050 can only be met if the installation rate of all building-related climate protection technologies is quadrupled.

  1. 1

    Synthetic fuels will play an important role in decarbonising the chemicals sector, the industrial sector, and parts of the transport sector.

    Synthetic fuel production technologies can be used to manufacture chemical precursors, produce high-temperature process heat, as well as to power air, sea and possibly road transport. Because synthetic fuels are more expensive than the direct use of electricity, their eventual importance in other sectors is still uncertain.

  2. 2

    To be economically efficient, power-to-gas and power-to-liquid facilities require inexpensive renewable electricity and high full load hours. Excess renewable power will not be enough to cover the power demands of synthetic fuel production.

    Instead, renewable power plants must be built explicity for the purpose of producing synthetic fuels, either in Germany (i.e. as offshore wind) or in North Africa and the Middle East (i.e. as onshore wind and/or PV). The development of synthetic fuel plants in oil- and gas-exporting countries would provide those nations with a post-fossil business model.

  3. 3

    In the beginning, synthetic methane and oil will cost between 20 and 30 cents per kilowatt hour in Europe. Costs can fall to 10 cents per kilowatt hour by 2050 if global Power-to-Gas (PtG) and Power-­to-Liquid (PtL) capacity reaches around 100 gigawatts.

    The aimed-for cost reductions require considerable, early and continuous investments in electrolysers and CO2 absorbers. Without political intervention or high CO2 pricing, however, this is unlikely, because the cost of producing synthetic fuels will remain greater than the cost of extracting conventional fossil fuels.

  4. 4

    We need a political consensus on the future of oil and gas that commits to the phase-out of fossil fuels, prioritises efficient replacement technologies, introduces sustainability regulations, and creates incentives for synthetic fuel production.

    Electricity-based fuels are not an alternative to fossil fuels but they can supplement technologies with lower conversion losses, such as electric vehicles and heat pumps. Application-specific adoption targets and binding sustainability regulations can help to ensure that PtG and PtL fuels benefit the climate while also providing a reliable foundation for long-term planning.

  1. 1

    A power system with a 95 percent share of renewables has the same or even lower costs than a fossil-based system under most assumptions for future fuel and CO₂ prices.

    A coal-based system would only be significantly less expensive if extremely low CO₂ prices are expected in 2050 (20 euros/t). Similarly, a natural gas-based system would only be significantly less expensive if gas prices are low and CO₂ prices are not high (i.e. below 100 euros/t).

  2. 2

    A renewables-based system insulates the economy against volatile commodity prices, as the costs of fossil-based systems heavily depend on fuel and CO₂ price trends.

    Variable costs (largely for fuel and CO₂) account for 30 to 67 percent of the total costs of the fossil-based systems. By contrast, variable costs represent just 5 percent of costs in the renewables-based systems.

  3. 3

    A power system with a 95 percent share of renewables reduces CO₂ emissions by 96 percent their 1990 levels at CO₂ abatement costs of about 50 euros/t.

    A renewables based energy transition can thus be considered efficient climate policy, as CO₂ damage costs are estimated a lot higher (80 euros/t over the short-term, and at 145 to 260 euros/t over the long term).

  1. 1

    With the growth of renewable energy, France and Germany are facing common challenges regarding the restructuring of their conventional power plant fleet.

    With a renewable electricity target of 40% in France and 65% in Germany by 2030, the two countries will significantly increase their production of wind and solar energy. Their conventional power plant fleet will have to be resized accordingly to avoid stranded costs.

  2. 2

    In France, the targeted development of renewable energy alongside the reinvestment in the nuclear fleet greater than 50 GW would pose a significant risk of stranded costs in the electricity sector

    A nuclear fleet exceeding 40 GW in 2030 would increase the national electricity export surplus and additionally postpone the achievement of the objective of reducing the share of nuclear power to 50% beyond 2030. The profitability of a nuclear fleet greater than 50 GW would not be assured in 2030, even when assuming a 60% increase in French export capacity, a doubling of interconnectors capacity in Europe and a CO2 price of 30 euros per ton of CO2.

  3. 3

    In Germany, achieving climate targets requires a halving of coal-fired power generation and an increase in the national renewable electricity target to at least 60% of electricity consumption in 2030.

    In this case, Germany’s electricity trade balance with its neighbours is balanced. The new planned target of 65% renewable energy in electricity consumption by 2030 will ensure that Germany will not depend on undesired electricity imports while phasing-out coal.

  4. 4
  1. 1

    Deutschland und Frankreich stehen vor dem Hintergrund des Wachstums der Erneuerbaren Energien vor gemeinsamen Herausforderungen bei der Restrukturierung des bestehenden Kraftwerksparks.

    Beide Länder werden die Erzeugung von Wind- und Solarstrom bis 2030 deutlich erhöhen müssen, um ihre Ausbauziele für Erneuerbare Energien zu erreichen. Zur Vermeidung von Stranded Assets ist eine damit einhergehende schrittweise Reduktion konventioneller Kapazitäten unerlässlich.

  2. 2

    In Frankreich bergen der geplante Zubau der Erneuerbaren Energien und die Investitionen zum Erhalt von über 50 Gigawatt Kernkraftkapazität ein großes Risiko von Stranded Assets im Stromsektor.

    Zu wachsenden Stromexporten Frankreichs würde es bereits kommen, wenn das Land mehr als 40 Gigawatt Kernkraftwerke im Jahr 2030 in Betrieb hielte. Zudem würde Frankreich sein Ziel, den Kernenergieanteil im Strommix auf 50 Prozent zu reduzieren, erst nach 2030 erreichen können. Selbst wenn eine Steigerung der französischen Stromexportkapazitäten um 60 Prozent, eine Verdopplung der Interkonnektoren innerhalb der Europäischen Union und eine CO2-Bepreisung von 30 Euro pro Tonne CO2 angenommen werden, wäre die Wirtschaftlichkeit eines Kernkraftwerksparks mit einer Kapazität von über 50 Gigawatt bis 2030 gefährdet.

  3. 3

    Wenn Deutschland seine Klimaziele erreichen will, muss es bis 2030 seine Stromerzeugung aus Kohle halbieren und den Anteil der Erneuerbaren Energien am Stromverbrauch auf 60 Prozent erhöhen.

    In diesem Fall wäre die Bilanz für den grenzüberschreitenden Stromhandel zwischen Deutschland und seinen Nachbarländern ausgeglichen. Die geplante Erhöhung des Anteils der Erneuerbaren Energien auf 65 Prozent des Bruttostromverbrauchs im Jahr 2030 wird dazu beitragen, eine unerwünschte Importabhängigkeit Deutschlands trotz des Kohleausstiegs zu vermeiden.

  4. 4
  1. 1

    Der Kohleausstieg wird sich erheblich beschleunigen.

    Das Kohleausstiegsgesetz sieht bisher die Stilllegung aller Braunkohlenkraftwerke bis spätestens 2038 vor. Um das Sektorziel der Energiewirtschaft für das Jahr 2030 des Klimaschutzgesetzes einzuhalten, ist jedoch eine weitgehende Reduzierung der Emissionen aus der Braunkohlenverstromung schon bis zum Jahr 2030 notwendig. Die neue Bundesregierung hat sich deshalb das Ziel gesetzt, den Kohleausstieg idealerweise bis 2030 abzuschließen.

  2. 2

    Der ökonomische Druck auf Braunkohlenkraftwerke wird spätestens ab 2024 wieder deutlich zunehmen.

    Der Anstieg der CO₂-Preise auf über 60 Euro pro Tonne CO₂ hat bewirkt, dass viele Braunkohlenkraftwerke ihre Betriebskosten perspektivisch nicht mehr decken können. Aufgrund des Anstiegs der Erdgaspreise hat sich der ökonomische Druck auf die Braunkohlenkraftwerke im Laufe des Jahres 2021 und auch für 2022 etwas entspannt. Ab spätestens 2024 ist jedoch zu erwarten, dass sich der Kohleausstieg marktgetrieben deutlich beschleunigen wird. Die im Koalitionsvertrag für 2021–2025 niedergelegten Regelungen, über die der CO₂-Preis bei mindestens 60 Euro liegen soll, wird diesen Prozess flankieren.

  3. 3

    Die aktuelle Planung der Braunkohlentagebaue sollte zeitnah an den sich beschleunigenden Ausstieg aus der Braunkohle angepasst werden.

    Die Planungen für die Braunkohlentagebaue orientieren sich bisher überwiegend an einem Kohleausstieg bis 2038. Um Risiken zu vermeiden, sollte die Tagebauplanung auf einen sich beschleunigenden Kohleausstieg bis 2030 angepasst und das bestehende System der Rückstellungen zur Wiedernutzbarmachung der Tagebaue umfassend überprüft werden. Auch hier entstehen mit dem Koalitionsvertrag 2021–2025 neue Prüfungs- und Handlungsbedarfe.

  1. 1

    The heating sector needs to phase out oil: A cost-efficient, climate friendly energy mix for building heating would most likely consist of 40 per cent natural gas, 25 per cent heat pumps, and 20 per cent district heating – with little to no oil.

    In this scenario, the importance of natural gas remains roughly the same as today, while oil heating is almost entirely replaced by heat pumps. District heating is another key factor. By 2030, district heating will primarily draw on heat from CHP plants, but it will increasingly rely on solar thermal energy, deep geothermal energy, industrial waste heat, and large-scale heat pumps as well.

  2. 2

    Efficiency is decisive: To meet 2030 targets, energy use for building heating must decline by 25 per cent relative to 2015 levels.

    Energy efficiency is a pillar of decarbonisation because it makes climate protection affordable. Improving energy use efficiency in buildings requires a green retrofit rate of 2 per cent and a high retrofit depth. But current trends in building modernisation fall far short of these targets.

  3. 3

    The heat pump gap: Based on current trends, some 2 million heat pumps will be installed by 2030 – but 5 to 6 million are needed.

    To close this gap, heat pumps must be installed early on not only in new buildings but also in existing buildings, for example as bivalent systems with fossil fuel-fired boilers for peak demand. If heat pumps can be flexibly managed and existing storage heaters replaced with efficient heating units by 2030, the 5 to 6 million heat pumps will affect only a slight rise on peak demand that thermal power plants must cover.

  4. 4

    Renewable electricity for heat pumps: By 2030, renewable energy must comprise at least 60 per cent of gross power consumption.

    To reach the 2030 climate protection target, additional electricity consumption in the heating and traffic sector must be covered by CO2-free energy sources. But the new renewable energy capacities stipulated in EEG 2017 will not suffice to do so.

From study : Heat Transition 2030
  1. 1

    The German Energiewende is here to stay. Started in the 1990s, it is a long-term energy and climate strategy reaching as far forward as 2050.

    It enjoys broad public support and is driven by four main political objectives: combatting climate change, avoiding nuclear risks, improving energy security, and guaranteeing competitiveness and growth.

  2. 2

    Wind energy and solar PV are the backbone of the German Energiewende and flexibility is the new paradigm of the power sector.

    Wind and solar energy are now cost-competitive with conventional energy sources for new investments. These technologies, however, impact power systems, making increased system flexibility crucial. Fossil power plants currently deliver the needed flexibility; increasingly other options (demand side management, storage,… ) will become more important.

  3. 3

    The Energiewende requires a structural change in the German energy sector, bringing new challenges and opportunities.

    Given the transformative nature of the Energiewende, investment, growth, and employment are shifting towards new low-carbon sectors. Renewable energy and energy efficiency are providing several hundred thousand jobs, while jobs in the nuclear and coal sectors are declining. A broad consensus on the phasing out of coal is needed to accompany this restructuring process.

  4. 4

    The transformation of the power systems toward renewable energy is not only taking place in Germany but worldwide.

    In 2014, for the third year running, worldwide investment in new renewable capacity exceeded investment in fossil-fuel power. Many other countries in Europe and beyond have set ambitious renewable energy targets. The challenges faced by Germany are therefore a preview of what is likely to occur in several other countries in the medium to long-term.

From study : Understanding the Energiewende
  1. 1

    Initial EEG investments will begin to pay out in 2023: From then on, the EEG surcharge will fall despite increasing shares of renewable energy.

    The main reason is that starting in 2023, EEG funding for renewable plants from the early years with high feed-in tariffs starts to expire, and new renewable energy plants produce electricity at a considerably lower cost.

  2. 2

    If the expansion of renewables continues at its ambitious pace, electricity costs will rice by 1-2 ct/kWh until 2023, but then fall by 2-4 ct/kWh by 2035.

    The sum of the EEG surcharge and wholesale electricity price, after being adjusted for inflation, will climb from around 10 cent per kWh today to 11 to 12 cents in 2023 and then sink to 8 to 10 cents by 2035.

  3. 3

    In 2035, electricity will cost the same as today, but 60 per cent will stem from renewable sources.

    According to the current law, the share of renewables in electricity use is to rise from today’s 28 per cent to 55-60 per cent in 2035. Yet, the electricity cost in 2035 will be on the same level as today.

  4. 4

    Main factors driving the EEG surcharge in the future will be the wholesale power price, the level of power demand, exemptions for industry and the amount of self-consumption.

    Since renewable energy plants have now become affordable alternatives for energy production, these drivers – not the costs and volumes of renewables – are essential for the EEG surcharge level.

From study : Projected EEG Costs up to 2035
  1. 1

    The Foundation

    Principle 1: Convening a ‘Round Table for a National Consensus on Coal’

    Principle 2: Incremental, legally binding phase-out of coal power by 2040

  2. 2

    The Coal Phase-Out in Germany’s Power Plant Fleet

    Principle 3: No new construction of coal-fired power plants

    Principle 4: Determine a cost-efficient decommissioning plan for existing coal power plants based on remaining plant lifespans, including flexibility options in lignite mining regions

    Principle 5: No additional national climate policy regulations for coal-fired power plants beyond the phase-out plan

  3. 3

    The Coal Phase-Out in Lignite Mining Regions

    Principle 6: No additional lignite mines and no further relocation processes of affected communities

    Principle 7: The follow-up costs of lignite mining should be financed with a special levy on lignite

    Principle 8: Creation of ‘Structural Change Fund’ to ensure a sound financial basis for structural change in affected regions

  4. 4

    Economic and Social Aspects of the Coal Phase-Out

    Principle 9: Ensuring security of supply over the entire transformation period

    Principle 10: Strengthening EU Emissions Trading and the prompt retirement of CO? certificates set free by the coal phase-out

    Principle 11: Ensuring the economic competitiveness of energy-intensive companies and the Germany economy as a whole during the transformation process

  1. 1

    Three components are typically discussed under the term “integration costs” of wind and solar energy: grid costs, balancing costs and the cost effects on conventional power plants (so-called “utilization effect”).

    The calculation of these costs varies tremendously depending on the specific power system and methodologies applied. Moreover, opinions diverge concerning how to attribute certain costs and benefits, not only to wind and solar energy but to the system as a whole.

  2. 2

    Integration costs for grids and balancing are well defined and rather low.

    Certain costs for building electricity grids and balancing can be clearly classified without much discussion as costs that arise from the addition of new renewable energy. In the literature, these costs are often estimated at +5 to +13 EUR/MWh, even with high shares of renewables.

  3. 3

    Experts disagree on whether the “utilization effect” can (and should) be considered as integration costs, as it is difficult to quantify and new plants always modify the utilization rate of existing plants.

    When new solar and wind plants are added to a power system, they reduce the utilization of the existing power plants, and thus their revenues. Thus, in most cases, the cost for “backup” power increases. Calculations of these effects range between -6 and +13 EUR/MWh in the case of Germany at a penetration of 50 percent wind and PV, depending especially on the CO? cost.

  4. 4

    Comparing the total system costs of different scenarios would be a more appropriate approach.

    A total system cost approach can assess the cost of different wind and solar scenarios while avoiding the controversial attribution of system effects to specific technologies.

  1. 1

    Between 2025 and 2030, the cost of generating electricity (LCOE) from solar PV and wind power in Japan will be lower than from any other technologies.

    . In 2025, the LCOE of utility-scale PV should reach about 6.3 ¥/kWh (5.2 €cts/kWh). Onshore wind could reach those levels in 2030. Those costs will be significantly lower than those of new fossil-fuelled power plants, comparable to lifetime extensions of nuclear and far below new nuclear and CCS projects.

  2. 2

    Adding the “integration costs” (costs for grid, balancing, and variability) on top of the LCOEs does not fundamentally change the competitiveness of variable renewables in 2030.

    Japan can reach a share of at least 45% renewables in 2030 (corresponding to a share of 35% wind and solar power) with integration costs below 1.5 ¥/kWh. Integrating 66% renewables (corresponding to 50% wind and solar power) would come only at a slightly higher cost of 2 ¥/kWh.

  3. 3

    Integration costs for grids and balancing are well defined and rather low.

    These costs are estimated at below 1 ¥/kWh for Japan. Various measures exist to minimize those costs, in particular through optimal grid planning, optimised grid operation, and well-functioning and non-discriminatory intraday and balancing markets.

  4. 4

    Integration costs for compensating the variability of renewables are much more disputed.

    The calculation of those costs can vary tremendously depending on the assumptions. A total system cost approach would circumvent some of the uncertainties, in particular the controver-sial attribution of system effects to specific technologies. Rather than to speak about integra-tion costs, we should speak about interaction costs. If the system adapts to renewables (reduc-ing baseload power plants), the cost of variability for integrating 50% PV and wind energy in Japan is estimated at about 1.25 ¥/kWh. If not, the costs of variability could be much higher. This finding calls for a refinement of energy markets design, so as to incentivize rather than to hamper flexibility.

  1. 1

    Increased integration between the Nordic countries and Germany will become ever more important as the share of renewables increases. The more renewables enter the system, the higher the value of additional transmission capacity between Nordic countries and Germany will become.

    In particular, additional generation from renewables in the Nordics – reflected in the Nordic electricity balance - will increase the value of transmission capacity. There is a lot of potential for trade, due to hourly differences in wholesale electricity prices throughout the year.

  2. 2

    A closer integration of the Nordic and the German power systems will reduce CO2 emissions due to better utilisation of renewable electricity.

    This is caused by reduced curtailment of renewables, improved integration of additional renewable production sites and increased competitiveness of biomass-fuelled power plants.

  3. 3

    Higher integration will lead to the convergence of wholesale electricity prices between the Nordic countries and Germany. But even with more integration, the Nordic countries will see lower wholesale electricity prices if they deploy large shares of renewables themselves.

    In general, additional integration will lead to slightly higher wholesale electricity prices in the Nordics and to slightly lower prices in Germany. But this will be counteracted by the decreasing price effect that higher wind shares in the Nordics have on the wholesale power market.

  4. 4

    Distributional effects from increased integration are significantly higher across stakeholder groups within countries than between countries.

    This strongly impacts the incentives of market players such as electricity producers or consumers (e.g., energy-intensive industries) for or against increased integration. Distributiona leffects need to be taken into account for creating public acceptance for new lines and for the cross-border allocation of network investments.

  1. 1

    Increased integration between the Nordic countries and Germany will become ever more important as the share of renewables increases. The more renewables enter the system, the higher the value of additional transmission capacity between Nordic countries and Germany will become.

    In particular, additional generation from renewables in the Nordics – reflected in the Nordic electricity balance - will increase the value of transmission capacity. There is a lot of potential for trade, due to hourly differences in wholesale electricity prices throughout the year.

  2. 2

    A closer integration of the Nordic and the German power systems will reduce CO2 emissions due to better utilisation of renewable electricity.

    This is caused by reduced curtailment of renewables, improved integration of additional renewable production sites and increased competitiveness of biomass-fuelled power plants.22

  3. 3

    Higher integration will lead to the convergence of wholesale electricity prices between the Nordic countries and Germany. But even with more integration, the Nordic countries will see lower wholesale electricity prices if they deploy large shares of renewables themselves.

    In general, additional integration will lead to slightly higher wholesale electricity prices in the Nordics and to slightly lower prices in Germany. But this will be counteracted by the decreasing price effect that higher wind shares in the Nordics have on the wholesale power market.3

  4. 4

    Distributional effects from increased integration are significantly higher across stakeholder groups within countries than between countries.

    This strongly impacts the incentives of market players such as electricity producers or consumers (e.g., energy-intensive industries) for or against increased integration. Distributiona leffects need to be taken into account for creating public acceptance for new lines and for the cross-border allocation of network investments.

  1. 1

    Wind and solar PV drive power system development.

    As part of Europe’s renewable energy expansion plans, the PLEF countries will strive to draw 32 to 34 percent of their electricity from wind and solar by 2030. The weather dependency of these technologies impacts power systems, making increased system flexibility crucial.

  2. 2

    Regional European power system integration mitigates flexibility needs from increasing shares of wind and solar.

    Different weather patterns across Europe will decorrelate single power generation peaks, yielding geographical smoothing effects. Wind and solar output is generally much less volatile at an aggregated level and extremely high and low values disappear. For example, in France the maximum hourly ramp resulting from wind fluctuation in 2030 is 21 percent of installed wind capacity, while the Europe-wide maximum is only at 10 percent of installed capacity.

  3. 3

    Cross-border exchange minimises surplus renewables generation.

    When no trading options exist, hours with high domestic wind and solar generation require that generation from renewables be stored or curtailed in part. With market integration, decorrelated production peaks across countries enable exports to regions where the load is not covered. By contrast, a hypothetical national autarchy case has storage or curtailment requirements that are ten times as high.

  4. 4

    Conventional power plants need to be flexible partners of wind and solar output.

    A more flexible power system is required for the transition to a low-carbon system. Challenging situations are manifold, comprising the ability to react over shorter and longer periods. To handle these challenges, the structure of the conventional power plant park and the way power plants operate will need to change. Renewables, conventional generation, grids, the demand side and storage technologies must all become more responsive to provide flexibility.

  1. 1

    The European power system will be based on wind power, solar PV and flexibility.

    The existing climate targets for 2030 imply a renewables share of some 50 percent in the electricity mix, with wind and PV contributing some 30 percent. The reason is simple: they are by far the cheapest zero-carbon power technologies. Thus, continuous investments in these technologies are required for a cost-efficient transition; so are continuous efforts to make the power system more flexible at the supply and demand side.

  2. 2

    Making the Energy-Only Market more flexible and repairing the EU Emissions Trading Scheme are prerequisites for a successful power market design.

    A more flexible energy-only market and a stable carbon price will however not be enough to manage the required transition to a power system with high shares of wind and solar PV. Additional instruments are needed.

  3. 3

    A pragmatic market design approach consists of five elements: Energy-only market, emissions trading, smart retirement measures, stable revenues for renewables, and measures to safeguard system adequacy.

    Together, they form the Power Market Pentagon; all of them are required for a functioning market design. Their interplay ensures that despite legacy investments in high-carbon an inflexible technologies, fundamental uncertainties about market dynamics, and CO2 prices well below the social cost of carbon, the transition to a reliable, decarbonised power system occurs cost-efficiently.

  4. 4

    The Power Market Pentagon is a holistic approach to the power system transformation. When designing the different elements, policy makers need to consider repercussions with the other dimensions of the power system.

    For example, introducing capacity remunerations without actively retiring high-carbon, inflexible power plants will restrain meeting CO2 reduction targets. Or, reforming the ETS could trigger a fuel switch from coal to gas, but cannot replace the need for revenue stabilisation for renewables.

From study : The Power Market Pentagon
  1. 1

    Germany is currently facing an Energiewende paradox: Despite an increasing share of renewable energy sources, its greenhouse gas emissions are rising.

    The reason for this paradox is not to be found in thedecision to phase out nuclear power – the decrease of nuclear generation is fully offset by an increasedgeneration from renewables. Rather, the paradox is caused by a fuel switch from gas to coal.

  2. 2

    Due to current market conditions, German coal-fired power plants are pushing gas plants out of the market – both within Germany and in neighbouring countries.

    Since 2010, coal and CO2 prices have decreased, whilegas prices have increased. Accordingly, Germany’s coal-fired power plants (both new and old) are able to produceat lower costs than gas-fired power plants in Germany and in the neighbouring electricity markets thatare coupled with the German market. This has yielded record export levels and rising emissions in Germany.

  3. 3

    If Germany is to reach its Energiewende targets, the share of coal in the German power sector has to decrease drastically – from 45 percent today to 19 percent in 2030.

    Sharp decreases in generation fromlignite and hard coal of 62 and 80 percent, respectively, are expected in the next 15 years while theshare of gas in electricity generation will have to increase from 11 to 22 percent. This goes in line with thegovernments’ renewables and climate targets for 2030.

  4. 4

    Germany needs a coherent strategy to transform its coal sector.

    Such a strategy – call it a coal consensus –would bring power producers, labour unions, the government and environmental groups together in findingways to manage the transformation.

  1. 1

    The expansion of renewable energy does not have to wait for electricity storage.

    In the next 10 to 20 years the flexibility required in the power system can be provided for by other, more cost-effective technologies such as flexible power plants, demand side management. New storage is required only at very high shares of renewable energies.

  2. 2

    The market for new storage technologies will grow dynamically.

    New markets for battery storage and power to gas technologies are expected to emerge, especially in the transport and chemical sector. Storage developed in these sectors can enable further flexibility for the electricity system as an additional service. Research and development as well as market incentive programs should maximize the system-supporting contribution of new storage technologies.

  3. 3

    Storage must receive equal access to markets for flexibility.

    Storage can already today deliver several ancillary services at competitive costs. Flexibility markets – such as the ancillary services or future capacity markets – should therefore be designed such that they are technology-neutral.

  4. 4

    Storage should become a tool in the toolbox of distribution system operators.

    In specific cases, storage that is used to support a grid can help to avoid grid expansion in the low-voltage distribution grid. The regulatory framework should enable such cost-efficient decisions.

  1. 1

    Improving energy efficiency would significantly lower the costs of the German electricity system.

    Each saved kilowatt-hour of electricity reduces fuel and CO2 emissions, as well as investment costs forfossil and renewable power plants and power grid expansion. If electricity consumption can be lowered by10 to 35 percent by 2035 compared to the Reference scenario outlined in the study, the costs for electricitygeneration will reduced by 10 to 20 billion euros2012.

  2. 2

    Improvements in the energy efficiency of the electricity sector can be achieved economically.

    One saved kilowatt-hour of electricity would lead to reduced electrical system costs of between 11 to 15euro cents2012 by 2035, depending on the underlying assumptions. Many efficiency measures wouldgenerate lower costs than these savings, and would therefore be beneficial from an overall economicperspective.

  3. 3

    Reductions in future power consumption mean a lower need to expand the power grid.

    A significant increase in energy efficiency can significantly reduce the long-term need to expand thetransmission grid: between 1,750 and 5,000 km in additional transmission lines will be needed by 2050,down from 8,500 km under the “business as usual” scenario.

  4. 4

    Reducing power consumption would reduce both CO2 emissions and import costs for fuel.

    Reducing power consumption by 15 percent compared to the Reference scenario would lower CO2 emissionsby 40 million tonnes and would reduce spending on coal and natural gas imports by 2 billion euros2012 in2020.

  1. 1

    Policy makers have a large scope of action in designing policies for the regional distribution of onshore wind and photovoltaics.

    Regional distribution of this renewable energy has little impact on the total cost of power supply.

  2. 2

    Finding the right balance is important in expanding offshore wind power.

    To promote technology development and reduce the cost of electricity for consumers, expansion should be continued, but on a lower level than current plans foresee.

  3. 3

    Grid expansion is an important prerequisite for the Energiewende.

    Solely in terms of cost, a few years of delays for the additional transmission lines foreseen in the German Grid Development Planning act would not be critical. Further expansion of renewables does not have to wait for these new transmission lines.

  4. 4

    A strong focus on battery storage systems combined with photovoltaic is currently not desirable.

    Only if cost of such systems drop by 80 % in the next 20 years would a renewable expansion path focusing on photovoltaics + storage be an economically viable option.

Stay in touch. Subscribe to our newsletter.

]>